Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Modeling Tourists' Personality in Recommender Systems
    Publication . Alves, Patrícia; Saraiva, Pedro; Carneiro, João; Campos, Pedro; Martins, Helena; Novais, Paulo; Marreiros, Goreti
    Personalization is increasingly being perceived as an important factor for the effectiveness of Recommender Systems (RS). This is especially true in the tourism domain, where travelling comprises emotionally charged experiences, and therefore, the more about the tourist is known, better recommendations can be made. The inclusion of psychological aspects to generate recommendations, such as personality, is a growing trend in RS and they are being studied to provide more personalized approaches. However, although many studies on the psychology of tourism exist, studies on the prediction of tourist preferences based on their personality are limited. Therefore, we undertook a large-scale study in order to determine how the Big Five personality dimensions influence tourists' preferences for tourist attractions, gathering data from an online questionnaire, sent to Portuguese individuals from the academic sector and their respective relatives/friends (n=508). Using Exploratory and Confirmatory Factor Analysis, we extracted 11 main categories of tourist attractions and analyzed which personality dimensions were predictors (or not) of preferences for those tourist attractions. As a result, we propose the first model that relates the five personality dimensions with preferences for tourist attractions, which intends to offer a base for researchers of RS for tourism to automatically model tourist preferences based on their personality.
  • A Multiple Criteria Decision Analysis Framework for Dispersed Group Decision-Making Contexts
    Publication . Carneiro, João; Martinho, Diogo; Alves, Patrícia; Conceição, Luís; Marreiros, Goreti; Novais, Paulo
    To support Group Decision-Making processes when participants are dispersed is a complex task. The biggest challenges are related to communication limitations that impede decision-makers to take advantage of the benefits associated with face-to-face Group Decision-Making processes. Several approaches that intend to aid dispersed groups attaining decisions have been applied to Group Decision Support Systems. However, strategies to support decision-makers in reasoning, understanding the reasons behind the different recommendations, and promoting the decision quality are very limited. In this work, we propose a Multiple Criteria Decision Analysis Framework that intends to overcome those limitations through a set of functionalities that can be used to support decision-makers attaining more informed, consistent, and satisfactory decisions. These functionalities are exposed through a microservice, which is part of a Consensus-Based Group Decision Support System and is used by autonomous software agents to support decision-makers according to their specific needs/interests. We concluded that the proposed framework greatly facilitates the definition of important procedures, allowing decision-makers to take advantage of deciding as a group and to understand the reasons behind the different recommendations and proposals.