Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Development of an electrochemical DNA-based biosensor for the detection of the cardiovascular pharmacogenetic-altering SNP CYP2C9*3Publication . Morais, Stephanie L.; Magalhães, Júlia M.C. S.; Domingues, Valentina F.; Delerue-Matos, Cristina; Ramos-Jesus, Joilson; Ferreira-Fernandes, Hygor; Pinto, Giovanny R.; Santos, Marlene; Barroso, M. FátimaCardiovascular diseases are among the major causes of mortality and morbidity. Warfarin is often prescribed for these disorders, an anticoagulant with inter and intra-dosage variability dose required to achieve the target international normalized ratio. Warfarin presents a narrow therapeutic index, and due to its variability, it can often be associated with the risk of hemorrhage, or in other patients, thromboembolism. Single-nucleotide polymorphisms are included in the causes that contribute to this variability. The Cytochrome P450 (CYP) 2C9*3 genetic polymorphism modifies its enzymatic activity, and hence warfarin's plasmatic concentration. Thus, the need for a selective, rapid, low-cost, and real-time detection device is crucial before prescribing warfarin. In this work, a disposable electrochemical DNA-based biosensor capable of detecting CYP2C9*3 polymorphism was developed. By analyzing genomic databases, two specific 78 base pairs DNA probes; one with the wild-type adenine (Target-A) and another with the cytosine (Target-C) single-nucleotide genetic variation were designed. The biosensor implied the immobilization on screen-printed gold electrodes of a self-assembled monolayer composed by mercaptohexanol and a linear CYP2C9*3 DNA-capture probe. To improve the selectivity and avoid secondary structures a sandwich format of the CYP2C9*3 allele was designed using complementary fluorescein isothiocyanate-labeled signaling DNA probe and enzymatic amplification of the electrochemical signal. Chronoamperometric measurements were performed at a range of 0.015–1.00 nM for both DNA targets achieving limit of detection of 42 p.m. The developed DNA-based biosensor was able to discriminate between the two synthetic target DNA targets, as well as the targeted denatured genomic DNA, extracted from volunteers genotyped as non-variant homozygous (A/A) and heterozygous (A/C) of the CYP2C9*3 polymorphism.
- Electrochemical genosensor for the detection of Alexandrium minutum dinoflagellatesPublication . Morais, Stephanie L.; Barros, Piedade; Santos, Marlene; Delerue-Matos, Cristina; Gomes, Andreia C.; Barroso, M. FátimaThis work addresses the development of a disposable electrochemical genosensor for the detection of the toxic dinoflagellate, Alexandrium minutum. Analyzing public databases, a specific 70 bp DNA probe, targeting A. minutum, was selected and designed. The genosensor methodology implied the immobilization of a A. minutum-specific DNA-capture probe onto screen-printed gold electrodes (SPGE). To improve both the selectivity and to avoid strong secondary structures, that could hinder the hybridization efficiency, a sandwich format of the A. minutum gene was designed using a fluorescein isothiocyanate-labelled signaling DNA probe and enzymatic amplification of the electrochemical signal. Using this electrochemical genosensor, a oncentration range from 0.12 to 1.0 nM, a LD of 24.78 pM with a RSD <5.2% was determined. The genosensor was successfully applied to the selective analysis of the targeted A. minutum specific region denatured genomic DNA extracted from toxic dinoflagellates present in the Atlantic Ocean.
- Detection of alexandrium minutum dinoflagellate in environmental samples using electrochemPublication . Morais, Stephanie L.; Barros, Piedade; Santos, Marlene; Delerue-Matos, Cristina; Gomes, Andreia C.; Barroso, M. FátimaDinoflagellates are aquatic microorganisms that inhabit both salt and fresh waters. These microorganisms are mostly harmless, however, under certain conditions, some species rapidly re produce forming water blooms that not only discolor the waters but also compromise the health of every organism in the vicinity, as some dinoflagellates produce potent toxins deemed unsafe for human health (e.g. Alexandrium minutum). In this work, a disposable electrochemical genosensor for the detection of the toxic dinoflagellate Alexandrium minutum was developed. The analytical plat form methodology consisted in a sandwich format heterogeneous hybridization of complementary DNA sequences assay. The 70 bp A. minutum-specific targeting probe, the 45 bp fluorescein isothi ocyanate-labelled signaling DNA probe and the 25 bp thiolated-DNA-capture probe were designed, after analyzing public databases. To maximize the complementary DNA hybridization and to avoid the formation of strong secondary structures, a mixed mercaptohexanol (MCH) and self-assembled monolayer (SAM) A. minutum-specific DNA-capture probe was immobilized onto disposable screen-printed gold electrodes (SPGE). Using chronoamperometric measurements, the enzymatic amplification of the electrochemical signal was obtained with a concentration range from 0.12 to 1.0 nM, a LD of 24.78 pM with a RSD < 5.2 %. This electrochemical genosensor was successfully applied to the selective analysis of the targeted A. minutum specific region of denatured genomic DNA, ex tracted from toxic dinoflagellates present in the Atlantic Ocean.