Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- 5G network as key-enabler for vehicular platooningPublication . Duarte, Paulo; Soyturk, Mujdat; Robles, Ramiro; Araújo, Marco; Yaman, Berkay; Goes, Adriano; Mendes, Bruno; Javanmardi, Gowhar; Gutiérrez Gaitán, MiguelThe future of goods transportation will rely on increased efficiency, lower risks, and diminished delays through the use of vehicle platoons that benefit from vehicular connectivity using V2X (Vehicle to Everything) applications. This article describes a system that offers the aforementioned vehicular connectivity to platoons, based on AI-enhanced 5G for resource allocation in wireless platoon intra-communications under three scenarios (latency emergency braking, platoon wireless resource management in tunnels, V2X communications interference in a traffic congestion). Demos are described for each of the scenarios, targeting different layers, starting by the PHY (physical) layer where propagation models are implemented, then a simulation-based MAC (medium access control) layer that allows the allocation of resources to the connected User Equipments (UE) and finally a management and orchestration layer capable of monitoring and managing the radio network, offering features such as network slicing management using O-RAN (Open Radio Access Network) standards.
- Joint spectrum and antenna selection diversity for V2V links with ground reflectionsPublication . Robles, Ramiro; Gutiérrez Gaitán, Miguel; Javanmardi, Gowhar; Kurunathan, HarrisonThis paper addresses the study of a fading-rejection algorithm based on joint spectrum and antenna selection in a vehicle-to-vehicle (V2V) multiple antenna system. The central objective of this selective scheme is to provide resilience against the destructive effects of the superposition of line-of-sight (LOS) and ground-reflected signals. The paper also provides an extension to channels that combine such deterministic superposition of multiple paths and reflections with an uncorrelated double scattering component, which shows how the algorithm is also beneficial under more general channel modelling assumptions. A multiple-ray performance model is used to describe the deterministic signal interactions between multiple antennas across contiguous vehicles. The antenna selection component is shown to reject deterministic fading, particularly at short values of the inter-vehicular distance. By contrast, when the spectrum bands are correctly chosen, the spectrum selection component can exhibit gains for a wider range of inter-vehicular distances than its antenna selection counterpart. This indicates that both components of the proposed solution are, in some cases, complementary, and therefore, they should be considered together in V2V multiple antenna design. Derivation of the statistics of the selective scheme considering an additional double scattering stochastic channel component is here proposed. Simulation results from all expressions show important gains for a given range of inter-vehicular distances.