ISEP - Instituto Superior de Engenharia do Porto
Permanent URI for this community
Browse
Browsing ISEP - Instituto Superior de Engenharia do Porto by Sustainable Development Goals (SDG) "07:Energias Renováveis e Acessíveis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Engineering a Sustainable Future with EPS@ISEPPublication . Malheiro, Benedita; Guedes, Pedro; Leal Filho, Walter; Gasparetto Rebelatto, Bianca; Annelin, Alice; Boström, Gert-OlofThe challenge of engineering education is to transform engineering students into agents of innovation and well-being. In addition to solid scientific and technical knowledge, critical thinking, problem-solving and interpersonal competencies, it implies the ability to design and implement solutions supported by ethical and sustainability principles. With this goal in mind, the European Project Semester (EPS) provides a student-centred project-based learning framework. It is offered by a group of European higher education institutions, including the Instituto Superior de Engenharia do Porto (ISEP), the engineering school of the Polytechnic of Porto. Students work in teams of four to six, from different fields of study and nationalities, to design solutions to problems that affect individuals, society or the planet, taking into account the state of the art, the market and the ethical and sustainability implications of their decisions. These solutions are then implemented in a proof-of-concept prototype. Most of the projects address problems in education, the environment, food production and smart cities and have a strong educational, ethical and sustainability drive, encouraging students to develop sustainability competencies. This work analyses team papers of illustrative EPS@ISEP projects searching for evidences of the development of sustainability competencies. The proposed method maps keywords related to the sixteen United Nations Sustainable Development Goals to the contents of team papers by applying natural language processing and reusing the list of SDG keywords proposed by Auckland University. The results confirm EPS@ISEP fosters sustainability competencies in engineering undergraduates.
- Graciosa Island’s Hybrid Energy System Expansion Scenarios: A Technical and Economic AnalysisPublication . Jesus, José; Nogueira, Teresa; Magano, JoséThe island of Graciosa in the Azores faces unique energy challenges due to its remote location and reliance on imported diesel fuel. As a result, a hybrid energy system has been implemented that combines wind and solar energy with energy storage and diesel generators. This article examines the expansion of the island’s hybrid energy system, by simulating four alternative scalable scenarios that take into account expected technological advances over the next 20 years, including technologies such as biomass and hydrogen. Homer Pro and PVSyst software were used for optimizing the design of the stand-alone hybrid renewable energy system, with the aim of achieving cost-effective configurations and optimizing production, storage, and power grid management. Four simulations were performed to evaluate the expansion scenarios, namely in terms of configurations, component sizing, and economic feasibility. The results show that the most balanced, cost-effective scenario is the one that combines all the energy sources considered: photovoltaic, wind, biomass, battery storage, and hydrogen. The originality of this study lies in the scenario comparison methodology used to evaluate the viability and expansion of a hybrid energy system using modern renewable energy production technologies adapted to the specific insular conditions of Graciosa Island, assessing the economic impact and taking into account the imperative of energy security. This paper provides valuable insights into the potential and challenges of hybrid energy systems on the island of Graciosa and is instrumental for projects alike in similar remote regions.