Browsing by Author "Silva, Ana S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Compensatory movement detection through inertial sensor positioning for post-stroke rehabilitationPublication . Borges, Carla M.; Silva, Cláudia; Salazar, António J.; Silva, Ana S.; Correia, Miguel V.; Santos, Rubim; Vilas-Boas, João P.An increasing ageing society and consequently rising number of post-stroke related neurological dysfunction patients are forcing the rehabilitation field to adapt to ever-growing demands. In parallel, an unprecedented number of research efforts and technological solutions meant for human monitoring are continuously influencing traditional methodologies, causing paradigm shifts; extending the therapist patient dynamics. Compensatory movements can be observed in post-stroke patient when performing functional tasks. Although some controversy remains regarding the functional benefits of compensatory movement as a way of accomplish a given task, even in the presence of a motor deficit; studies suggest that such maladaptive strategies may limit the plasticity of the nervous system to enhance neuro-motor recovery. This preliminary study intends to aid in the development of a system for compensatory movement detection in stroke patients through the use of accelerometry data.
- Low-cost wearable data acquisition for stroke rehabilitation: A proof-of-concept study on accelerometry for functional task assessmentPublication . Salazar, Antonio J.; Silva, Ana S.; Silva, Cláudia; Borges, Carla M.; Correia, Miguel V.; Santos, Rubim; Vilas-Boas, Joao P.Background: An increasingly aging society and consequently rising number of patients with poststroke-related neurological dysfunctions are forcing the rehabilitation field to adapt to ever-growing demands. Although clinical reasoning within rehabilitation is dependent on patient movement performance analysis, current strategies for monitoring rehabilitation progress are based on subjective time-consuming assessment scales, not often applied. Therefore, a need exists for efficient nonsubjective monitoring methods. Wearable monitoring devices are rapidly becoming a recognized option in rehabilitation for quantitative measures. Developments in sensors, embedded technology, and smart textile are driving rehabilitation to adopt an objective, seamless, efficient, and cost-effective delivery system. This study aims to assist physiotherapists’ clinical reasoning process through the incorporation of accelerometers as part of an electronic data acquisition system. Methods: A simple, low-cost, wearable device for poststroke rehabilitation progress monitoring was developed based on commercially available inertial sensors. Accelerometry data acquisition was performed for 4 first-time poststroke patients during a reach-press-return task. Results: Preliminary studies revealed acceleration profiles of stroke patients through which it is possible to quantitatively assess the functional movement, identify compensatory strategies, and help define proper movement. Conclusion: An inertial data acquisition system was designed and developed as a low-cost option for monitoring rehabilitation. The device seeks to ease the data-gathering process by physiotherapists to complement current practices with accelerometry profiles and aid the development of quantifiable methodologies and protocols.