Browsing by Author "Sharma, Pankaj"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- An iterative process to extract value from maintenance projectsPublication . Mejía Niño, Carolina; Albano, Michele; Jantunen, Erkki; Sharma, Pankaj; Campos, Jaime; Baglee, DavidResearch and development projects are producing novel maintenance strategies and techniques. Anyway, it is not straightforward to transfer results from the lab to the real world, and thus many projects, both internal to a company and in cooperation between the members of a consortium, speculate how to perform this feat, called “exploitation” in the context of European projects. This paper discusses the necessity of novel techniques in modern maintenance, and then introduces a novel approach to the problem of transferring innovation from the lab to the market. The novel approach spawns from the “spiral software development” process and proceeds as a set of iterations that bring together different stakeholders to increase the number of products, techniques and results in general that can survive the end of a research and development project. The approach was applied to a large European project, which is described as use case, and the paper reports on the encouraging results that were attained.
- An Open Source Framework Approach to Support Condition Monitoring and MaintenancePublication . Campos, Jaime; Sharma, Pankaj; Albano, Michele; Ferreira, Luís Lino; Larrañaga, MartinThis paper discusses the integration of emergent ICTs, such as the Internet of Things (IoT), the Arrowhead Framework, and the best practices from the area of condition monitoring and maintenance. These technologies are applied, for instance, for roller element bearing fault diagnostics and analysis by simulating faults. The authors first undertook the leading industry standards for condition-based maintenance (CBM), i.e., open system architecture–condition-based maintenance (OSA–CBM) and Machinery Information Management Open System Alliance (MIMOSA), which has been working towards standardizing the integration and interchangeability between systems. In addition, this paper highlights the predictive health monitoring methods that are needed for an effective CBM approach. The monitoring of industrial machines is discussed as well as the necessary details are provided regarding a demonstrator built on a metal sheet bending machine of the Greenbender family. Lastly, the authors discuss the benefits of the integration of the developed prototypes into a service-oriented platform, namely the Arrowhead Framework, which can be instrumental for the remotization of maintenance activities, such as the analysis of various equipment that are geographically distributed, to push forward the grand vision of the servitization of predictive health monitoring methods for large-scale interoperability.
- Blockchain Technology Helps Maintenance to Stop Climate ChangePublication . Albano, Albano; Sharma, Pankaj; Campos, Jaime; Jantunen, ErkkiThe development and interest in Industry 4.0 together with rapid development of Cyber Physical Systems has created magnificent opportunities to develop maintenance to a totally new level. The Maintenance 4.0 vision considers massive exploitation of information regarding factories and machines to improve maintenance efficiency and efficacy, for example by facilitating logistics of spare parts, but on the other hand this creates other logistics issues on the data itself, which only exacerbate data management issues that emerge when distributed maintenance platforms scale up. In fact, factories can be delocalized with respect to the data centers, where data has to be transferred to be processed. Moreover, any transaction needs communication, be it related to purchase of spare parts, sales contract, and decisions making in general, and it has to be verified by remote parties. Keeping in mind the current average level of Overall Equipment Efficiency (50%) i.e. there is a hidden factory behind every factory, the potential is huge. It is expected that most of this potential can be realised based on the use of the above named technologies, and relying on a new approach called blockchain technology, the latter aimed at facilitating data and transactions management. Blockchain supports logistics by a distributed ledger to record transactions in a verifiable and permanent way, thus removing the need for multiple remote parties to verify and store every transaction made, in agreement with the first “r” of maintenance (reduce, repair, reuse, recycle). Keeping in mind the total industrial influence on the climate change, we can expect that with the aid of the new advancements the climate change can be if not totally stopped at least reduced, and contribute to the green economy that Europe aims for. The paper introduces the novel technologies that can support sustainability of manufacturing and industry at large, and proposes an architecture to bind together said technologies to realise the vision of Maintenance 4.0.
- Energy Saving by Blockchaining MaintenancePublication . Albano, Michele; Sharma, Pankaj; Campos, Jaime; Jantunen, ErkkiThe development and interest in Industry 4.0 together with rapid development of Cyber Physical Systems has created magnificent opportunities to develop maintenance to a totally new level. The Maintenance 4.0 vision considers massive exploitation of information regarding factories and machines to improve maintenance efficiency and efficacy, for example by facilitating logistics of spare parts, but on the other hand this creates other logistics issues on the data itself, which only exacerbate data management issues that emerge when distributed maintenance platforms scale up. In fact, factories can be delocalized with respect to the data centers, where data has to be transferred to be processed. Moreover, any transaction needs communication, be it related to purchase of spare parts, sales contract, and decisions making in general, and it has to be verified by remote parties. Keeping in mind the current average level of Overall Equipment Efficiency (50%) i.e. there is a hidden factory behind every factory, the potential is huge. It is expected that most of this potential can be realised based on the use of the above named technologies, and relying on a new approach called blockchain technology, the latter aimed at facilitating data and transactions management. Blockchain supports logistics by a distributed ledger to record transactions in a verifiable and permanent way, thus removing the need for multiple remote parties to verify and store every transaction made, in agreement with the first “r” of maintenance (reduce, repair, reuse, recycle). Keeping in mind the total industrial influence on the consumption of natural resources, such as energy, the new technology advancements can allow for dramatic savings, and can deliver important contributions to the green economy that Europe aims for. The paper introduces the novel technologies that can support sustainability of manufacturing and industry at large, and proposes an architecture to bind together said technologies to realise the vision of Maintenance 4.0.