Browsing by Author "Sámano-Robles, Ramiro"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- DynaVLC 13 towards dynamic GTS allocation in VLC networksPublication . Kurunathan, John Harrison; Gutiérrez Gaitán, Miguel; Sámano-Robles, Ramiro; Tovar, EduardoEnvisioned to deliver superior Quality of Service (QoS) by offering faster data rates and reduced latency in 6G communication scenarios, pioneering communication protocols like the IEEE 802.15.7 are poised to facilitate emerging application trends (e.g. metaverse). The IEEE 802.15.7 standard that supports visible light communication (VLC) provides determinism for time-critical reliable communication through its guaranteed time-slots mechanism of the contention-free period (CFP) while supporting non-time-critical communication through contention-access period (CAP). Nevertheless, the IEEE 802.15.7 MAC structure is fixed and statically defined at the beginning of the network creation. This rigid definition of the network can be detrimental when the traffic characteristics evolve dynamically, for example, due to environmental or user-driven workload conditions. To this purpose, this paper proposes a resource-aware dynamic architecture for IEEE 802.15.7 networks that efficiently adapts the superframe structure to traffic dynamics. Notably, this technique was shown to reduce the overall delay and throughput by up to 45% and 30%, respectively, when compared to the traditional IEEE 802.15.7 protocol performance under the same network conditions.
- MAC-PHY Cross-layer design for Secure Wireless Avionics Intra-CommunicationsPublication . Sámano-Robles, RamiroThis paper presents a framework for medium access control (MAC) and physical (PRY) cross-layer security design of wireless avionics intra-communications (WAICs). The paper explores the different options based on the latest results of MAC-PRY cross-layer design and the available standard technologies for WAICs. Particular emphasis is given to solutions based on multiple-input multiple-output (MIMO) systems and recent developments towards a wireless technology with ultra-low latency and high reliability in the context of 5G and machine-type traffic support. One major objective is to improve WAICs technology and thus match the real-time, reliability and safety critical performance of the internal aeronautics bus technologies (e.g., ARINC 664). The main identified vulnerabilities and potential solutions are explored, as well as their impact on system design complexity and feasibility for wireless networks on-board aircraft. The solutions are presented in the context of the European project SCOTT (secure connected trustable things) using the recently released reference architecture for trusted IoT systems. Other aspects of SCOTT such as trust, privacy, security classes, and safety are also discussed here for the aeronautics domain.