Browsing by Author "Prakash, Chander"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Advanced Characterization of Adhesive Joints and AdhesivesPublication . Campilho, Raul; Madani, Kouider; Prakash, ChanderStructural adhesives have shown significant improvements in their behavior over the past few decades. This has enabled their application to become a reality in many sectors of activity, including the aeronautics and the automotive industry [1]. This evolution has been strongly supported by an intense investigation into adhesive joints and their behavior. Despite this intense research, there is still much to be explored regarding this matter, which translates into a continuous investigation of the failure modes of these types of joints, the characterization of new adhesives, the design of new joint geometries, and the use of hybrid joints, with a view to eliminating or reducing the less positive aspects presented by these joints, taking advantage of the best characteristics of each type of joint. Numerical methods have played an extremely important role in the prediction of the joints’ behavior, helping to find the best solutions to the typical problems presented by these kinds of joints [2]. Strength prediction techniques can be mainly divided into static and dynamic, with the former being subjected to a wider research effort from the academic community. Nonetheless, recently, significant efforts have been made to address complex dynamic loadings, such as fatigue and impact. (...)
- Design of a Spiral Double-Cutting Machine for an Automotive Bowden Cable Assembly LinePublication . Barbosa, André F. G.; Campilho, Raul; Silva, Francisco J. G.; Sánchez-Arce, Isidro J.; Prakash, Chander; Buddhi, DharamThe manufacture of automotive components requires innovative technologies and equipment. Due to the competitiveness in the sector, the implementation of automatic and robotic equipment has been vital in its development to produce the largest number of products in the shortest amount of time. Automation leads to a significant reduction in defects and enables mass production and standardization of the final product. This work was based on the need of an automotive components’ company to increase the rate of spiral cable cutting, used as protection for Bowden (control) cables. Currently, this component, used in automotive systems, is processed with simple cutting machines and cleaning machines. Based on the design science research (DSR) methodology, this work aims to develop a machine capable of performing the cutting and cleaning of two spiral cables simultaneously and automatically. The development of this machine was based on existing machines, and the biggest challenge was the implementation of a double-cutting system. The designed machine met the initial requirements, such as enabling the simultaneous cut of two spirals, being fully automatic, doubling the output over the current solution, and fully complying with the current legislation.
- Dynamics of MHD Convection of Walters B Viscoelastic Fluid through an Accelerating Permeable Surface Using the Soret–Dufour MechanismPublication . Anusha, P.; Sri, M. Naga Swapna; Madhav, V.V. Venu; Chaitanya, Ch. Sri; Spandana, V.V.; Saxena, Kuldeep K.; Abdul-Zahra, Dalael Saad; Linul, Emanoil; Prakash, Chander; Budhi, Dharam; Campilho, RaulThe MHD convective Walters-B memory liquid flow past a permeable accelerating surface with the mechanism of Soret-Dufour is considered. The flow equation constitutes a set of partial differential equations (PDEs) to elucidate the real flow of a non-Newtonian liquid. The radiation thermo-physical parameters were employed based on the use of Roseland approximation. This implies the fluid employed in this exploration is optically thick. Utilizing suitable similarity terms, the flow equation PDEs were simplified to become total differential equations. The spectral homotopy analysis method (SHAM) was utilized to provide outcomes to the model. The SHAM involves the addition of the Chebyshev pseudospectral approach (CPM) alongside the homotopy analysis approach (HAM). The outcomes were depicted utilizing graphs and tables for the quantities of engineering concern. The mechanisms of Soret and Dufour were separately examined. The imposed magnetism was found to lessen the velocity plot while the thermal radiation term elevates the temperature plot because of the warm particles of the fluid.
- Electrical Discharge Coating a Potential Surface Engineering Technique: A State of the ArtPublication . Tyagi, Rashi; Mandal, Amitava; Das, Alok Kumar; Tripathi, Ashutosh; Prakash, Chander; Campilho, Raul; Saxena, Kuldeep K.Electrical discharge coating (EDC) process is used to deposit material on workpiece surface from sacrificial or green compact tool electrode in an electrical discharge machine. The paper presents the mechanism of EDC using green compact electrode and powder mixed dielectric methods. The tool electrode material, electrode size, process parameters, and type of dielectrics can directly affect the surface integrity of workpiece. Here, a process map of EDC as a function of process parameters, its classification, advantages, and applications for a wide range of engineering materials offers a proper template for the evaluation of coating phenomena. This study shows that EDC is an economic process as compared to other costlier techniques. Additionally, the effect of various EDM and EDC parameters on surface integrity and tribological behavior of deposited coatings is studied with their pros and cons. Finally, the current research trends of EDC and its challenges are elaborated.
- Feasibility Analysis of Machining Cobalt-Chromium Alloy (Stellite-6) Using TiN Coated Binary InsertsPublication . Shah, Saurabh; Joshi, Anand; Chauhan, Kamlesh; Oza, Ankit; Prakash, Chander; Campilho, Raul; Kumar, SandeepThe objective of the study was to check the feasibility of machining Stellite 6, a cobalt–chromium superalloy, using TiN-coated carbide inserts in an end milling operation. The inserts were coated using the magnetron sputtering process. The sputtering power and gas flow rate were considered as the variables during the coating process. The performance of the coated binary carbide insert was checked during the end milling of Stellite 6 (~45 HRC) through an experiment with a Taguchi design. Experimental runs based on an orthogonal array were executed for each insert type to check the feasibility of machining this cobalt-based alloy. Adequate precision and the optimum parametric conditions were determined and are reported in this study. Analysis of variance (ANOVA) with a two-factor interaction model was also undertaken to forecast the key elements influencing surface roughness. Based on the ANOVA model, the depth of the cut, combined with the insert type, was the factor that had the greatest influence on surface roughness, followed by the cutting feed, whereas the cutting velocity had the least significance based on the tests. Moreover, the regression analysis demonstrated that the created model can be used to accurately forecast surface roughness in end milling of Stellite 6 with confidence intervals of 95%.
- Improving the Efficiency of the Bowden Cable Terminal Injection Process for the Automotive IndustryPublication . Pereira, José L. T. A.; Campilho, Raul; Silva, Francisco J. G.; Sánchez-Arce, Isidro J.; Prakash, Chander; Buddhi, DharamControl cables transfer force between two separate locations by a flexible mean, and hence, they are important in the automotive industry and many others; their terminals interact with both moving and moved mechanisms, so they must be strong. Cable terminals are commonly made of ZAMAK and are created by injection molding. However, such a production method requires leaving extra material to allow the correct molding, also known as sprues, which are removed later in the process. In this case, the sprues were separating from the terminals in an uncontrolled way. In this work, the cause of sprues separating prematurely from the terminals in a production line is addressed. The whole process was analyzed, and each possible solution was evaluated using process improvement techniques and the Finite Element Method, leading to the best solutions. Molds, mold structures, and auxiliary equipment were improved, resulting in a minimally invasive intervention and remaining compatible with other equipment. Cost analyses were done, indicating an investment return in less than a year. The modification led to a reduction of 62.6% in the sprue mass, while porosity was reduced by 10.2% and 55.9%, corresponding to two terminal models. In conclusion, the interventions fulfilled the requirements and improved the operation of the line.
- Improving the Efficiency of the Bowden Cable Terminal Injection Process for the Automotive IndustryPublication . Pereira, José L. T. A.; Campilho, Raul; Silva, Francisco J. G.; Sánchez-Arce, Isidro J.; Prakash, Chander; Buddhi, DharamControl cables transfer force between two separate locations by a flexible mean, and hence, they are important in the automotive industry and many others; their terminals interact with both moving and moved mechanisms, so they must be strong. Cable terminals are commonly made of ZAMAK and are created by injection molding. However, such a production method requires leaving extra material to allow the correct molding, also known as sprues, which are removed later in the process. In this case, the sprues were separating from the terminals in an uncontrolled way. In this work, the cause of sprues separating prematurely from the terminals in a production line is addressed. The whole process was analyzed, and each possible solution was evaluated using process improvement techniques and the Finite Element Method, leading to the best solutions. Molds, mold structures, and auxiliary equipment were improved, resulting in a minimally invasive intervention and remaining compatible with other equipment. Cost analyses were done, indicating an investment return in less than a year. The modification led to a reduction of 62.6% in the sprue mass, while porosity was reduced by 10.2% and 55.9%, corresponding to two terminal models. In conclusion, the interventions fulfilled the requirements and improved the operation of the line.
- Numerical Modelling and Validation of Mixed-Mode Fracture Tests to Adhesive Joints Using J-Integral ConceptsPublication . Neves, Luís F. R.; Campilho, Raul; Sánchez-Arce, Isidro J.; Madani, Kouder; Prakash, ChanderThe interest in the design and numerical modelling of adhesively-bonded components and structures for industrial application is increasing as a research topic. Although research on joint failure under pure mode is widespread, applied bonded joints are often subjected to a mixed mode loading at the crack tip, which is more complex than the pure mode and affects joint strength. Failure of these joints under loading is the objective of predictions through mathematical and numerical models, the latter based on the Finite Element Method (FEM), using Cohesive Zone Modelling (CZM). The Single leg bending (bending) testing is among those employed to study mixed mode loading. This work aims to validate the application of FEM-CZM to SLB joints. Thus, the geometries used for experimental testing were reproduced numerically and experimentally obtained properties were employed in these models. Upon the validation of the numerical technique, a parametric study involving the cohesive laws’ parameters is performed, identifying the parameters with the most influence on the joint behaviour. As a result, it was possible to numerically model SLB tests of adhesive joints and estimate the mixed-mode behaviour of different adhesives, which enables mixed-mode modelling and design of adhesive structures.
- Strength Evaluation of Functionalized MWCNT-Reinforced Polymer Nanocomposites Synthesized Using a 3D Mixing ApproachPublication . Patel, Vijay; Joshi, Unnati; Joshi, Anand; Oza, Ankit D.; Prakash, Chander; Linul, Emanoil; Campilho, Raul; Kumar, Sandeep; Saxena, Kuldeep KumarThe incorporation of carboxyl functionalized multi-walled carbon nanotube (MWCNT- COOH) into a polymethyl methacrylate (PMMA) has been investigated. The resultant tensile and flexural mechanical properties have been determined. In this paper, a novel synthesis process for a MWCNT-reinforced polymer nanocomposite is proposed. The proposed method significantly eliminates the most challenging issues of the nano-dispersed phase, including agglomeration and non-homogeneous mixing within a given matrix material, and also resolves the issues occurring in conventional mixing processes. The results of scanning electron microscopy support these claims. This 3D-mixing process is followed by an extrusion process, using a twin-screw extruder for pristine MWCNT, and a compression molding process for COOH-MWCNT, to prepare test specimens for experimentally determining the mechanical properties. The test specimens are fabricated using 0.1, 0.5, and 1.0 wt.% MWCNT, with a remaining PMMA phase. The testing is conducted according to ASTM D3039 and ASTM D7264 standards. Significant improvements of 25.41%, 35.85%, and 31.75% in tensile properties and 18.27%, 48%, and 33.33% in flexural properties for 0.1, 0.5, and 1.0 wt.% COOH-MWCNT in PMMA, respectively, compared to non-functionalized MWCNTs, were demonstrated. The highest strength was recorded for the nanocomposite with 0.5 wt.% f-MWCNT content, indicating the best doping effect at a lower concentration of f-MWCNT. The proposed CNT-PMMA nanocomposite may be found suitable for use as a scaffold material in the domain of bone tissue engineering research. This type of research possesses a high strength requirement, which may be fulfilled using MWCNT. Furthermore, this analysis also shows a significant amount of enhancement in flexural strength, which is clinically required for fabricating denture bases.
