Percorrer por autor "Petrovski, Zeljko"
A mostrar 1 - 10 de 12
Resultados por página
Opções de ordenação
- Antibacterial activity of Ionic Liquids based on ampicillin against resistant bacteriaPublication . Ferraz, Ricardo; Teixeira, Vânia; Rodrigues, Débora; Prudêncio, Cristina; Fernandes, Rúben; Noronha, João Paulo; Petrovski, Zeljko; Branco, LuísAntibacterial activity of novel Active Pharmaceutical Ingredient Ionic Liquids (API-ILs) based on ampicillin anion [Amp] have been evaluated. They showed growth inhibition and bactericidal properties on some sensitive bacteria and especially some Gram-negative resistant bacteria when compared to the [Na][Amp] and the initial bromide and chloride salts. For these studies were analysed the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBIC) against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinically isolated), as well as sensitive Gram positive S. Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis and completed using clinically isolated resistent strains: E. coli TEM CTX M9, E. coli CTX M2 and E. coli AmpC Mox. From the obtained MIC values of studied APIs-ILs and standard [Na][Amp] were derived RDIC values (relative decrease of inhibitory concentration). High RDIC values of [C16Pyr][Amp] especially against two resistant Gram-negative strains E. coli TEM CTX M9 (RDIC>1000) and E. coli CTX M2 (RDIC>100) point clearly to a potential promising role of APIs-ILs as antimicrobial drugs especially against resistant bacterial strains.
- Development and biological evaluation of API-ILs based on anti-bacterial and anti-fungal drugsPublication . Ferraz, Ricardo; Branco, Luís; Fernandes, Rúben; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, ZeljkoIn recent years Ionic Liquids (ILs) are being applied in life sciences. ILs are being produce with active pharmaceutical drugs (API) as they can reduce polymorphism and drug solubility problems [1] Also ILs are being applied as a drug delivery device in innovative therapies What is appealing in ILs is the ILs building up platform, the counter-ion can be carefully chosen in order to avoid undesirable side effects or to give innovative therapies in which two active ions are paired. This work shows ILs based on ampicillin (an anti-bacterial agent) and ILs based on Amphotericin B. Also we show studies that indicate that ILs based on Ampicillin could reverse resistance in some bacteria. The ILs produced in this work were synthetized by the neutralization method described in Ferraz et. al. [2] Ampicillin anion was combined with the following organic cations 1-ethyl-3-methylimidazolium, [EMIM]; 1-hydroxy-ethyl-3-methylimidazolium, [C2OHMIM]; choline, [cholin]; tetraethylammonium, [TEA]; cetylpyridinium, [C16pyr] and trihexyltetradecylphosphonium, [P6,6,6,14]. Amphotericin B was combined with [C16pyr], [cholin] and 1-metohyethyl-3-methylimidazolium, [C3OMIM]. The ILs-APIs based on ampicillin[2] were tested against sensitive Gram-negative bacteria Escherichia coli ATCC 25922 and Klebsiella pneumonia (clinical isolated), as well as on Gram positive Staphylococcus Aureus ATCC 25923, Staphylococcus epidermidis and Enterococcus faecalis. The arising resistance developed by bacteria to antibiotics is a serious public health threat and needs new and urgent measures. We study the bacterial activity of these compounds against a panel of resistant bacteria (clinical isolated strains): E. coli CTX M9, E. coli TEM CTX M9, E. coli TEM1, E. coli CTX M2, E. coli AmpC Mox2. In this work we demonstrate that is possible to produce ILs from anti-bacterial and anti-fungal compounds. We show here that the new ILs can reverse the bacteria resistance. With the careful choice of the organic cation, it is possible to create important biological and physic-chemical properties. This work also shows that the ion-pair is fundamental in ampicillin mechanism of action.
- Development of novel ionic liquids based on ampicillinPublication . Ferraz, Ricardo; Prudêncio, Cristina; Branco, Luís; Marrucho, Isabel; Araújo, João; Rebelo, Luís; Ponte, Manuel Nunes; Noronha, João Paulo; Petrovski, ZeljkoNovel ionic liquids containing ampicillin as an active pharmaceutical ingredient anion were prepared with good yields by using a new, efficient synthetic procedure based on the neutralization of a moderately basic ammonia solution of ampicillin with different organic cation hydroxides. The relevant physical and thermal properties of these novel ionic liquids based on ampicillin were also evaluated.
- Development of novel ionic liquids based on valproate anionPublication . Ferraz, Ricardo; Costa, Alexandra; Marrucho, Isabel; Branco, Luís; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, ZeljkoValproic acid (2-propyl pentanoic acid) is a pharmaceutical drug used for treatment of epileptic seizures absence, tonic-clonic (grand mal), complex partial seizures, and mania in bipolar disorder [1]. Valproic acid is a slightly soluble in water and therefore as active pharmaceutical ingredient it is most commonly applied in form of sodium or magnesium valproate salt [1].However the list of adverse effects of these compounds is large and includes among others: tiredness, tremor, sedation and gastrointestinal disturbances [2]. Ionic liquids (ILs) are promising compounds as Active Pharmaceutical Ingredients (APIs)[3]. In this context, the combinations of the valproate anion with appropriate cation when ILs and salts are formed can significantly alter valproate physical, chemical and thermal properties.[4] This methodology can be used for drug modification (alteration of drug solubility in water, lipids, bioavailability, etc)[2] and therefore can eliminate some adverse effect of the drugs related to drug toxicity due for example to its solubility in water and lipids (interaction with intestines). Herein, we will discuss the development of ILs based on valproate anion (Figure 1) prepared according a recent optimized and sustainable acid-base neutralization method [4]. The organic cations such as cetylpyridinium, choline and imidazolium structures were selected based on their biocompatibility and recent applications in pharmacy [3]. All novel API-ILs based on valproate have been studied in terms of their physical, chemical (viscosity, density, solubility) and thermal (calorimetric studies) properties as well as their biological activity.
- Evaluation of solubility and partition properties of ampicillin-based ionic liquidsPublication . Florindo, Catarina; Araújo, João; Alves, Filipa; Matos, Carla; Ferraz, Ricardo; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, Zeljko; Branco, Luís; Rebelo, Luís; Marrucho, IsabelIn order to overcome the problems associated with low water solubility, and consequently low bioavailability of active pharmaceutical ingredients (APIs), herein we explore a modular ionic liquid synthetic strategy for improved APIs. Ionic liquids containing l-ampicillin as active pharmaceutical ingredient anion were prepared using the methodology developed in our previous work, using organic cations selected from substituted ammonium, phosphonium, pyridinium and methylimidazolium salts, with the intent of enhancing the solubility and bioavailability of l-ampicillin forms. In order to evaluate important properties of the synthesized API-ILs, the water solubility at 25 °C and 37 °C (body temperature) as well as octanol–water partition coefficients (Kow's) and HDPC micelles partition at 25 °C were measured. Critical micelle concentrations (CMC's) in water at 25 °C and 37 °C of the pharmaceutical ionic liquids bearing cations with surfactant properties were also determined from ionic conductivity measurements.
- Fungidal and bacterial activity of N,N-dimethyl-4-(2,2,2-trichloro-1-(phenylamino)ethyl)anilinePublication . Ferraz, Ricardo; Petrovski, Zeljko; Fernandes, Rúben; Noronha, João Paulo; Prudêncio, CristinaN,N-dimethyl-4-((phenylamino)methyl)aniline (1) was prepared by condensation of aniline and 4-(dimethylamino)benzaldehyde [1] N,N-dimethyl-4-(2,2,2-trichloro-1-(phenylamino)ethyl)aniline (2) was synthesized by trichloromethylation of the imine (N,N-dimethyl-4-((phenylimino)methyl)aniline (1)) with trichloroacetic anhydride under microwave irradiation [2] (Sheme 1). The present work reports the study of bacterial and yeast activity for the compound 2. The bacteria used in this study are Staphylococcus aureus, Escherichia coli and the yeast are Saccharomyces Cerevisiae Candida albican.The results that we will present are the determination of minimal inhibitory concentration (MIC), by means of microdilution by plate method and the specific growth constants for this microorganism. Further studies are being performed to determine viability and cellular injury with this drug.
- Ionic Liquids Synthesis – MethodologiesPublication . Ferraz, Ricardo; Prudêncio, Cristina; Vieira, Mónica; Fernandes, Rúben; Noronha, João Paulo; Petrovski, ZeljkoIonic Liquids (IL) are salts with at least one organic cation. The term “Ionic Liquid” has been restricted to salts with melting point below 100° C [1]. In the recent years, (ILs) have gained popularity in science and technology. The large number of possible cation/ anion combinations allows a great variety of tunable interactions; also their unique properties and characteristics make it a promising and an attractive to work with in several fields. However, how ILs are produced? This editorial pretends to make a brief commentary of some of the main methodologies of ILs synthesis
- New ionic liquids and salts derived from β-Lactam antibioticsPublication . Ferraz, Ricardo; Branco, Luís; Marrucho, Isabel; Fernandes, Rúben; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, ZeljkoIn recent years ionic liquids (ILs) have been increasing the popularity and the number of applications. Ionic liquids were used mainly as solvent in organic synthesis, but in recent years they are also used in analytical chemistry, separation chemistry and material science. Additional to significant developments in their chemical properties and applications, ionic liquids are now bringing unexpected opportunities at the interface of chemistry with the life sciences. Ionic liquids (ILs) are currently defined as salts that are composed solely of cations and anions which melt below 100ºC. Our goal in this work is to explore the dual activity of the ionic liquids, due to the presence of two different ions, an anion with bacterial activity as β-lactam antibiotics and different kinds of cations. In this work the anions of ILs and salts were derived from three different antibiotics: ampicillin, penicillin and amoxicillin. The cations were derived from substituted ammonium, phosphonium pyridinium and methylimidazolium salts, such as: tetraethyl ammonium, trihexiltetradecilphosphonium, cetylpyridinium, choline (an essential nutrient), 1-ethyl-3-methylimidazolium, and 1-ethanol-3-methyl imidazolium structures. Commercial ammonium and phosponium halogen salts were first transformed into hydroxides on ionic exchange column (Amberlite IRA-400) in methanol. The prepared hydroxides were then neutralized with β-lactam antibiotics. After crystallization we obtained pure ILs and salts containing β-lactam antibiotics. This work presents a novel method for preparation of new salts of antibiotics with low melting point and their chemistry and microbiological characterization.
- Preparation and characterization of beta-lactam antibiotic as Ionic liquids and saltsPublication . Ferraz, Ricardo; Fernandes, Rúben; Prudêncio, Cristina; Branco, Luís; Marrucho, Isabel; Noronha, João Paulo; Petrovski, ZeljkoWith the increase of bacterial resistance a large number of therapeutic strategies have been used to fight different kind of infections. In recent years ionic liquids (ILs) have been increasing the popularity and the number of applications. First ionic liquids were used mainly as solvent in organic synthesis, but now they are used in analytical chemistry, separation chemistry and material science among others. Additional to significant developments in their chemical properties and applications, ionic liquids are now bringing unexpected opportunities at the interface of chemistry with the life sciences Ionic liquids (ILs) are currently defined as salts that are composed solely of cations and anions which melt below 100ºC. Our goal in this work is to explore the dual activity of the ionic liquids, due to the presence of two different ions, an ion with bacterial activity as a beta-lactam antibiotic and different kinds of cations. In this work the anions of ILs and salts were derived from three different antibiotics: ampicillin, penicillin and amoxicillin. The cations were derived from substituted ammonium, phosphonium pyridinium and methylimidazolium salts, such as: tetraethyl ammonium, trihexiltetradecilphosphonium, cetylpyridinium, choline (an essential nutrient), 1-ethyl-3-methylimidazolium, and 1-ethanol-3-methyl imidazolium structures. Commercial ammonium and phosponium halogen salts were first transformed into hydroxides. on ionic exchange column (Amberlite IRA-400) in methanol. The prepared hydroxides were then neutralized with beta-lactam antibiotics. After crystallization we obtained pure ILs and salts containing beta-lactam antibiotics. This work presents a novel method for preparation of new salts of antibiotics with low melting point and their characterization.
- Synthesis, characterization and antiproliferative activity on cancer cell lines of new ionic liquids from ampicillinPublication . Ferraz, Ricardo; Costa-Rodrigues, João; Fernandes, Maria Helena; Branco, Luís; Marrucho, Isabel; Ponte, Manuel Nunes; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, ZeljkoIonic Liquids (ILs) are ionic compounds that possess melting temperature below 100ºC and they have been a topic of great interest since the mid-1990s due to their unique properties. The range of IL uses has been broadened, due to a significant increase in the variety of physical, chemical and biological ILs properties. They are now used as Active Pharmaceutical Ingredients (APIs) and recent interests are focused on their application as innovative solutions in new medical treatment and delivery options.1 In this work, our principal objective was the synthesis and investigation of physicochemical and medical properties of ionic liquids (ILs) and organic salts from ampicillin. This approach is of huge interest in pharmaceutical industry as cation and anion composition of ILs and organic salts can greatly alter their desired properties, namely the melting temperature and even synergistic effects can be obtained.2,3 For the synthesis of these compounds we used a recently developed method proposed by Ohno et al.4 for the preparation of quaternary ammonium and phosphonium hydroxides, that were neutralized by ampicillin. After purification we obtained pure ILs and salts in good yields. These ILs shows good antimicrobial and antifungal activities. As it is well known that some ionic liquids containing phosphonium and ammonium cation also shows anti-cancer activity1,5 we also decided to study these compounds against some cancer cell lines.
