Browsing by Author "Oudra, Brahim"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Contributions of TOXICROP project for the assessment of the impacts of toxic cyanobacteria in agriculture †Publication . Campos, Alexandre; Freitas, Marisa; Oudra, Brahim; Vasconcelos, VítorWater contaminated with microcystins (MCs) or other cyanotoxins is recurrently used in agriculture and for crop irrigation. Several deleterious effects of MCs in plants that may impair crop productivity, including a decrease in growth and tissue necrosis, as well as an inhibition of photosynthesis and metabolic changes, have been reported. Studies also revealed a significant accumulation of MCs in edible tissues and plant organs, which raise concerns related to food safety. The European project TOXICROP precisely tackles this environmental problem. The main aims of the project are to map agricultural risk areas of cyanotoxin occurrence, to assess the fate of cyanotoxins in crops, and evaluate the impacts of using low-quality water for crop irrigation. The project also develops research on water remediation, exploring nature-based technologies. Here, we review part of the research carried out in the project, concerning the toxicity of cyanotoxins in crops. The research from TOXICROP Consortium has revealed for instance that adult strawberry or faba bean plants are susceptible to moderate concentrations of MCs (10 to 20 µg MCs/L). Furthermore, experiments with faba bean and common wheat grown in sterile (microorganism-free) and non-sterile (microorganism-rich) soil, watered with 100 μg MCs/L, revealed that native rhizospheric microbiota play an important role in the mitigation of the phytotoxic impact of MCs on plant growth, reducing toxin accumulation in both soils and plant tissues. Our studies also revealed that leaf vegetables, such as lettuce and spinach, growing in hydroponics are more susceptible to MCs than to the toxin, cylindrospermopsin (CYN). The lowest toxin concentrations affecting spinach and lettuce growth were 5 + 5 and 25 + 25 µg/L CYN/MC mixtures, respectively. The results also reveal that the accumulation of MCs and CYN in plants depends on the conditions in which plants grow and concentrations of toxins in the irrigation water. In some cases, MCs are accumulated in plant tissues and exceed the tolerable daily intake proposed by the World Health Organization. We highlight the importance and contributions of this research to the definition and implementation of regulatory limits for cyanotoxins in irrigation waters.
- Impacts of microcystins on morphological and physiological parameters of agricultural plants: a reviewPublication . Campos, Alexandre; Redouane, El Mahdi; Freitas, Marisa; Amaral, Samuel; Azevedo, Tomé; Loss, Letícia; Máthé, Csaba; Mohamed, Zakaria A.; Oudra, Brahim; Vasconcelos, VítorCyanobacteria are a group of photosynthetic prokaryotes that pose a great concern in the aquatic environments related to contamination and poisoning of wild life and humans. Some species of cyanobacteria produce potent toxins such as microcystins (MCs), which are extremely aggressive to several organisms, including animals and humans. In order to protect human health and prevent human exposure to this type of organisms and toxins, regulatory limits for MCs in drinking water have been established in most countries. In this regard, the World Health Organization (WHO) proposed 1 µg MCs/L as the highest acceptable concentration in drinking water. However, regulatory limits were not defined in waters used in other applications/activities, constituting a potential threat to the environment and to human health. Indeed, water contaminated with MCs or other cyanotoxins is recurrently used in agriculture and for crop and food production. Several deleterious effects of MCs including a decrease in growth, tissue necrosis, inhibition of photosynthesis and metabolic changes have been reported in plants leading to the impairment of crop productivity and economic loss. Studies have also revealed significant accumulation of MCs in edible tissues and plant organs, which raise concerns related to food safety. This work aims to systematize and analyze the information generated by previous scientific studies, namely on the phytotoxicity and the impact of MCs especially on growth, photosynthesis and productivity of agricultural plants. Morphological and physiological parameters of agronomic interest are overviewed in detail in this work, with the aim to evaluate the putative impact of MCs under field conditions. Finally, concentration-dependent effects are highlighted, as these can assist in future guidelines for irrigation waters and establish regulatory limits for MCs
- In vitro antimicrobial activity of volatile compounds from the Lichen Pseudevernia furfuracea (L.) Zopf. against multidrug-resistant bacteria and fish pathogensPublication . Essadki, Yasser; Hilmi, Adel; Cascajosa-Lira, Antonio; Girão, Mariana; Darrag, El Mehdi; Rosário Martins, Maria; Romane, Abderrahmane; Zerrifi, Soukaina El Amrani; Mugani, Richard; Tazart, Zakaria; Redouane, El Mahdi; Jos, Angeles; Cameán, Ana M.; Vasconcelos, Vitor; Campos, Alexandre; Khalloufi, Fatima El; Oudra, Brahim; Barakate, Mustapha; Carvalho, Maria de FátimaLichens are symbiotic organisms with unique secondary metabolism. Various metabolites from lichens have shown antimicrobial activity. Nevertheless, very few studies have investigated the antimicrobial potential of the volatile compounds they produce. This study investigates the chemical composition and antimicrobial properties of volatile compounds from Pseudevernia furfuracea collected in two regions of Morocco. Hydrodistillation was used to obtain volatile compounds from samples collected in the High Atlas and Middle Atlas. Gas chromatography–mass spectrometry (GC-MS) analysis identified phenolic cyclic compounds as the primary constituents, with atraric acid and chloroatranol being the most abundant. Additionally, eight compounds were detected in lichens for the first time. The antimicrobial activity of these compounds was assessed using disc diffusion and broth microdilution methods. Both samples demonstrated significant antimicrobial effects against multidrug-resistant human bacteria, reference microorganisms, fish pathogens, and Candida albicans, with minimum inhibitory concentrations (MICs) ranging from 1000 µg/mL to 31.25 µg/mL. This study provides the first report on the volatile compounds from Pseudevernia furfuracea and their antimicrobial effects, particularly against fish pathogens, suggesting their potential as novel antimicrobial agents for human and veterinary use. Further research is warranted to explore these findings in more detail.