Browsing by Author "Oliveira, Liliana"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- CD5L is upregulated upon infection with Mycobacterium tuberculosis with no effect on disease progressionPublication . Cardoso, Marcos S.; Gonçalves, Rute; Oliveira, Liliana; Silvério, Diogo; Téllez, Erica; Paul, Tony; Sarrias, Maria Rosa; Carmo, Alexandre M.; Saraiva, MargaridaTuberculosis (TB) alone caused over a billion deaths in the last 200 years, making it one of the deadliest diseases to humankind. Understanding the immune mechanisms underlying protection or pathology in TB is key to uncover the much needed innovative approaches to tackle TB. The scavenger receptor cysteine-rich molecule CD5 antigen-like (CD5L) has been associated with TB, but whether and how CD5L shapes the immune response during the course of disease remains poorly understood. Here, we show an upregulation of CD5L in circulation and at the site of infection in C57BL/6 Mycobacterium tuberculosis-infected mice. To investigate the role of CD5L in TB, we studied the progression of M. tuberculosis aerosol infection in a recently described genetically engineered mouse model lacking CD5L. Despite the increase of CD5L during infection of wild-type mice, absence of CD5L did not impact bacterial burden, histopathology or survival of infected mice. Absence of CD5L associated with a modest increase in the numbers of CD4+ T cells and the expression of IFN-γ in the lungs of infected mice, with no major effect in overall immune cell dynamics. Collectively, this study confirms CD5L as a potential diagnostic biomarker to TB, showing no discernible impact on the outcome of the infection.
- Development of bioluminescent Group B streptococcal strains for longitudinal infection studiesPublication . Lorga, Inês; Geraldo, Rafaela; Soares, Joana; Oliveira, Liliana; Firon, Arnaud; Bonifácio Andrade, ElvaGroup B Streptococcus (GBS) remains the leading bacterial cause of invasive neonatal disease, resulting in substantial morbidity and mortality. New therapeutic approaches beyond antibacterial treatment to prevent neonatal disease outcomes are urgent. One significant limitation in studying GBS disease and progression is the lack of non-invasive technologies for longitudinal studies. Here, we develop and compare three bioluminescent GBS strains for in vivo pathogenic analysis. Bioluminescence is based on the luxABCDE operon on a replicative vector (luxGBS-CC17), and the red-shifted firefly luciferase on a replicative vector (fflucGBS-CC17) or integrated in the genome (glucGBS-CC17). We show that luxGBS-CC17 is suitable for in vitro analysis but does not produce a significant bioluminescent signal in infected pups. In contrast, the fflucGBS-CC17 results in a strong bioluminescent signal proportional to the organ colonisation level. However, the stability of the replicative vector depends on the route of infection, especially when pups acquire the bacteria from infected vaginal mucosa. Stable chromosomal integration of luciferase in glucGBS-CC17 leads to significant bioluminescence in both haematological and vertical infection models associated with high systemic colonisation. These strains will allow the preclinical evaluation of treatment efficacy against GBS invasive disease using wholemouse bioluminescence imaging.
