Browsing by Author "Moreira, Cristina Isabel da Silva"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Criação de Bases de Dados de Imagens Histológicas Anotadas e Desenvolvimento de um Modelo de Classificação Automática de Patologias MamáriasPublication . Moreira, Cristina Isabel da Silva; Coelho, Luís Filipe Martins PintoO Cancro da Mama é uma das patologias mais prevalentes mundialmente e uma das principais causas de mortalidade por cancro associado ao sexo feminino em Portugal. O diagnóstico de patologias mamárias que é feito através de biópsias é uma tarefa complexa e detalhada para os Patologistas e como tal suscetível a erros. É exigido uma análise meticulosa e especializada de múltiplos campos microscópicos, onde a precisão é vital e os atrasos podem ser críticos. Neste sentido, o desenvolvimento de plataformas que auxiliem a um diagnóstico rápido e preciso é cada vez mais essencial. Neste projeto foi desenvolvido um dataset de imagens histológicas de biópsias mamárias para o diagnóstico de patologias mamárias, com o objetivo de aplicar e avaliar a eficácia das redes neuronais na classificação e análise destes tecidos. O processo de criação do dataset resume-se à recolha do tecido, seguindo o seu processamento laboratorial onde as lâminas obtidas foram digitalizadas e submetidas a um processo de conversão e segmentação para formatos compatíveis com a posterior análise. A organização e categorização das imagens foi efetuada em código Python para a classificação automatizada, garantindo a integridade e precisão dos dados. A fase de pré-processamento e organização do dataset foram essenciais para assegurar a qualidade e representatividade dos dados. A precisão das categorizações e a distribuição equilibrada das imagens nas respetivas categorias para treino e validação dos modelos foram cruciais. A normalização das imagens e a extração adequadas dos segmentos de interesse foram etapas fundamentais para preparar os dados para a análise das redes neuronais. Esta preparação dos dados assegurou que os modelos fossem treinados com as informações corretas e essenciais para garantir a eficácia da aprendizagem. Para a aplicação das redes neuronais, foram selecionados os modelos SqueezeNet e InceptionV3, onde foram testados quatros cenários de classificação em ambas as arquiteturas e utilizadas quatro classes patológicas diferentes (Doença Fibrocística, Fibroadenoma, Carcinoma Lobular Invasivo e Carcinoma Ductal Invasivo). Estes modelos foram adaptados com camadas de entrada e saída personalizadas. A eficácia destes modelos foi avaliada com métricas estatísticas e gráficas incluindo a matriz de confusão, exatidão (accuracy), precisão (precision), sensibilidade (recall), F1-score e ainda as curvas de ROC e Precision-Recall. Ambos os modelos demonstraram uma boa performance com uma accuracy que variou entre os 88% e os 98% para todos os cenários testados. Porém, foi observado que o modelo InceptionV3 é o mais bem-sucedido, obtendo na maioria dos casos os valores mais altos de accuracy apesar de se ter observado alguma variação devido a fenómenos como overfitting. Os resultados obtidos indicam que as redes neuronais podem ser ferramentas eficazes no diagnóstico de patologias mamárias a partir de imagens histológicas. A accuracy elevada dos modelos utilizados para desenvolvimento deste projeto, refletem a capacidade de reconhecer e classificar de forma precisa as características morfológicas relevantes nas imagens, demonstrando que a Inteligência Artificial tem um potencial significativo para melhorar a precisão e eficácia dos diagnósticos em Anatomia Patológica.