Browsing by Author "Marques, Sara S."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Assessment of immunoglobulin capture in immobilized protein A through automatic bead injectionPublication . Ramos, Inês I.; Marques, Sara S.; Magalhães, Luís M.; Barreiros, Luisa; Reis, Salette; Lima, José L.F. C.; Segundo, Marcela A.The repeatable immobilization of molecular recognition elements onto particle surfaces has a strong impact on the outcomes of affinity-based assays. In this work, an automatic method for the immobilization of immunoglobulin G (IgG) onto protein A-Sepharose microbeads was established through the flow programming features of the portable lab-on-valve platform using micro-bead injection spectroscopy. The reproducible packing of protein A-microbeads between two optic fibers was feasible, allowing on-column probing of IgG retention. The automation of solutions handling and the precise control of time of IgG interaction with the beads rendered repeatable immobilization cycles, within a short timeframe (<2 min). The proposed method featured the preparation of disposable immunosorbents for downstream analytical applications, such as immunosensing or microenrichment of target analytes. In-situ quantification of IgG@protein A-microbeads was carried out using a horseradish peroxidase-labeled detection IgG. The colorimetric oxidation of 3,3',5,5'-tetramethylbenzidine was monitored on-column. Quantitation of mouse and human IgG immobilized@protein A-microbeads was achieved for loading masses between 0.1 and 0.4 μg per ca. 5.5 mg of sorbent. The implemented detection strategy allowed the quantification of human IgG in certified human serum (ERM®- DA470k/IFCC) and spiked saliva, yielding recoveries of 102-108% and requiring minimal volume (1-15 μL) from serum and saliva.
- Exploiting kinetic features of ORAC assay for evaluation of radical scavenging capacityPublication . Carvalho, Joana R. B.; Meireles, Andreia N.; Marques, Sara S.; Gregório, Bruno J. R.; Ramos, Inês I.; Silva, Eduarda M. P.; Barreiros, Luisa; Segundo, Marcela A.The analysis and interpretation of data retrieved from Oxygen Radical Absorbance Capacity (ORAC) assays represent a challenging task. ORAC indexes originate from different mathematical approaches often lacking correct elucidation of kinetic features concerning radical scavenging reactions by antioxidant compounds. In this work, the expression of ORAC values as area under fluorescein (FL) decay curves (AUC) and lag time are critically compared. This multi-parametric analysis showed the extension of radical scavenging reactions beyond the lag time period for caffeic acid, gallic acid, reduced glutathione and quercetin, extending their antioxidant protection of FL. Ethanol delayed the reaction of both FL and antioxidant compounds with free radical species generated from 2,20 -azobis(2-amidinopropane) dihydrochloride thermolysis. Trolox equivalent values, commonly used to express ORAC values, were more affected by the differences in radical scavenging kinetics between the reference and the tested antioxidant compounds when calculated from AUC than from lag time. These findings stressed the importance of choosing calibrator compounds presenting ORAC kinetics similar to samples to prevent biased estimation of the antioxidant capacity. Additionally, the framework proposed here provides a sustainable analytical method for the evaluation of antioxidant capacity, with an AGREE score of 0.73.
- Fluorometric method based on molecular recognition solid-phase extraction for determination of riboflavin in milk and infant formulaPublication . Osório, Marcelo V.; Marques, Sara S.; Oliveira, Hugo M.; Barreiros, Luisa; Segundo, Marcela A.Riboflavin (vitamin B2) is involved in several biological processes, particularly in energy production, and it is acquired from food ingestion, principally from supplemented food during the first years of life. Therefore, a simple, fast and cost-effective high-throughput method for determination of riboflavin in milk and infant formula is proposed, based on selective extraction using commercially available molecularly imprinted polymers targeted to riboflavin, followed by direct fluorometric determination. Several aspects were studied, namely microplate assay conditions, the composition of eluting solution and the stability of riboflavin in the eluate. Hence, elution using 1% (v/v) acetic acid in methanol or in acetonitrile is recommended, followed by immediate analysis or solvent evaporation, with reconstitution and analysis within 24 h. The proposed method provided a LOD of 0.03 mg L−1, with working range for undiluted samples between 0.125 and 2 mg L−1, and sample throughput of 24 h−1. It was successfully applied to certified reference material NIST-1846 and also to commercial milk and infant formula samples.
- Insights on Ultrafiltration-Based Separation for the Purification and Quantification of Methotrexate in NanocarriersPublication . Marques, Sara S.; Ramos, Inês I.; Fernandes, Sara; Barreiros, Luisa; Lima, Sofia A. C.; Reis, Salette; Domingues, M. Rosário M.; Segundo, Marcela A.The evaluation of encapsulation efficiency is a regulatory requirement for the characterization of drug delivery systems. However, the difficulties in efficiently separating nanomedicines from the free drug may compromise the achievement of accurate determinations. Herein, ultrafiltration was exploited as a separative strategy towards the evaluation of methotrexate (MTX) encapsulation efficiency in nanostructured lipid carriers and polymeric nanoparticles. The effect of experimental conditions such as pH and the amount of surfactant present in the ultrafiltration media was addressed aiming at the selection of suitable conditions for the effective purification of nanocarriers. MTX-loaded nanoparticles were then submitted to ultrafiltration and the portions remaining in the upper compartment of the filtering device and in the ultrafiltrate were collected and analyzed by HPLC-UV using a reversed-phase (C18) monolithic column. A short centrifugation time (5 min) was suitable for establishing the amount of encapsulated MTX in nanostructured lipid carriers, based on the assumption that the free MTX concentration was the same in the upper compartment and in the ultrafiltrate. The defined conditions allowed the efficient separation of nanocarriers from the free drug, with recoveries of >85% even when nanoparticles were present in cell culture media and in pig skin surrogate from permeation assays.
- Lab-on-valve automated and miniaturized assessment of nanoparticle concentration based on light-scatteringPublication . Marques, Sara S.; Ramos, Inês I.; Silva, Carla; Barreiros, Luisa; Domingues, Maria R.; Segundo, Marcela A.Nanoparticles (NPs) concentration directly impacts the dose delivered to target tissues by nanocarriers. The evaluation of this parameter is required during NPs developmental and quality control stages, for setting dose−response correlations and for evaluating the reproduci bility of the manufacturing process. Still, faster and simpler procedures, dismissing skilled operators and post-analysis conversions are needed to quantify NPs for research and quality control operations, and to support result validation. Herein, a miniaturized automated ensemble method to measure NPs concentration was established under the lab-on-valve (LOV) mesofluidic platform. Automatic NPs sampling and delivery to the LOV detection unit were set by flow programming. NPs concentration measurements were based on the decrease in the light transmitted to the detector due to the light scattered by NPs when passing through the optical path. Each analysis was accomplished in 2 min, rendering a determination throughput of 30 h−1 (6 samples h−1 for n = 5) and only requiring 30 μL (≈0.03 g) of NPs suspension. Measurements were performed on polymeric NPs, as these represent one of the major classes of NPs under development for drug delivery aims. Determinations for polystyrene NPs (of 100, 200, and 500 nm) and for NPs made of PEGylated poly-D,L-lactide-co glycolide (PEG−PLGA, a biocompatible FDA-approved polymer) were accomplished within 108 −1012 particles mL−1 range, depending on the NPs size and composition. NPs size and concentration were maintained during analysis, as verified for NPs eluted from the LOV by particle tracking analysis (PTA). Moreover, concentration measurements for PEG−PLGA NPs loaded with an anti-inflammatory drug, methotrexate (MTX), after their incubation in simulated gastric and intestinal fluids were successfully achieved (recovery values of 102−115%, as confirmed by PTA), showing the suitability of the proposed method to support the development of polymeric NPs targeting intestinal delivery.
- Microcarrier-based fluorescent yeast estrogen screen assay for fast determination of endocrine disrupting compoundsPublication . Gregório, Bruno J.R.; Ramos, Inês I.; Marques, Sara S.; Barreiros, Luísa; Magalhães, Luís M.; Schneider, Rudolf J.; Segundo, Marcela A.The presence of endocrine-disrupting compounds (EDCs) in water poses a significant threat to human and animal health, as recognized by regulatory agencies throughout the world. The Yeast Estrogen Screen (YES) assay is an excellent method to evaluate the presence of these compounds in water due to its simplicity and capacity to assess the bioaccessible forms/fractions of these compounds. In the presence of a compound with estrogenic activity, Saccharomyces cerevisiae cells, containing a lacZ reporter gene encoding the enzyme β-galactosidase, are induced, the enzyme is synthesised, and released to the extracellular medium. In this work, a YES-based approach encompassing the use of a lacZ reporter gene modified strain of S. cerevisiae, microcarriers as solid support, and a fluorescent substrate, fluorescein di-β-d-galactopyranoside, is proposed, allowing for the assessment of EDCs’ presence after only 2 h of incubation. The proposed method provided an EC50 of 0.17 ± 0.03 nM and an LLOQ of 0.03 nM, expressed as 17β-estradiol. The assessment of different EDCs provided EC50 values between 0.16 and 1.2 × 103 nM. After application to wastewaters, similar results were obtained for EDCs screening, much faster, compared to the conventional 45 h spectrophotometric procedure using a commercial kit, showing potential for onsite high-throughput screening of environmental contamination.
- Olive oil waste as a source of functional food ingredients: Assessing polyphenolic content and antioxidant activity in olive leavesPublication . Ronca, Carolina L.; Marques, Sara S.; Ritieni, Alberto; Giménez-Martínez, Rafael; Barreiros, Luísa; Segundo, Marcela A.Around two million tons of olive oil are produced in Europe annually, with Portugal being among the top five European olive oil-producing countries. Olive oil production results in a substantial amount of waste in the form of olive leaves. These discarded olive leaves contain valuable phenolic compounds with antioxidant, anti-inflammatory, hypoglycaemic, neuroprotective, and antiproliferative properties. Due to their richness in polyphenols with health-promoting properties, olive leaves can be considered a potential functional food ingredient. Thus, sustainable practices for reusing olive leaf waste are in demand. In this study, the polyphenolic content in olive leaves from different Portuguese locations was determined using HPLC-UV-Vis after defining the best fit-for-purpose liquid extraction strategy. The differences in the in vitro antioxidant activity in these samples were determined by several methodologies based on radical scavenging (against 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-2-picrylhydrazyl (DPPH), and peroxyl radical (ORAC)) and on reducing properties (cupric-reducing antioxidant capacity (CUPRAC), and Folin–Ciocalteu assay (FC)), to unveil the relationship between the profile and quantity of polyphenols with antioxidant mechanisms and their capacity. At last, the stability of extracted compounds upon lyophilization and exposition to surrogate biological fluids was assessed, envisioning the future incorporation of olive leaves extracted compounds in food products.
- Sample preparation and chromatographic methods for the determination of protein-bound uremic retention solutes in human biological samples: An overviewPublication . Fernandes, Sara R.; Meireles, Andreia N.; Marques, Sara S.; Silva, Luís; Barreiros, Luisa; Sampaio-Maia, Benedita; Miro, Manuel; Segundo, Marcela A.Protein-bound uremic retention solutes, such as indole-3-acetic acid, indoxyl sulfate, p-cresol and p-cresol sulfate, are associated with the development of several pathologies, namely renal, cardiovascular, and bone toxicities, due to their potential accumulation in the human body, thus requiring analytical methods for monitoring and evaluation. The present review addresses conventional and advanced sample treatment procedures for sample handling and the chromatographic analytical methods developed for quantification of these compounds in different biological fluids, with particular focus on plasma, serum, and urine. The sample preparation and chromatographic methods coupled to different detection systems are critically discussed, focusing on the different steps involved for sample treatment, namely elimination of interfering compounds present in the sample matrix, and the evaluation of their environmental impact through the AGREEprep tool. There is a clear trend for the application of liquid-chromatography coupled to tandem mass spectrometry, which requires protein precipitation, solid-phase extraction and/or dilution prior to analysis of biological samples. Furthermore, from a sustainability point of view, miniaturized methods resorting to microplate devices are highly recommended.