Browsing by Author "Lopes, H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Comparative study of PVD and CVD cutting tools performance in milling of duplex stainless steelPublication . Martinho, R. P.; Silva, F. J. G.; Martins, C.; Lopes, H.The machining process evolution has been accompanied by the improvement of tool performance, being this mainly due to the development of thin coatings, mono and multi-layered, providing the most appropriate set of properties for each machining condition. On the other hand, duplex stainless steels have registered a strong increase in demand, which, in many cases, requires the use of machining processes in order to obtain the final shape accurately. Taking into account these two aspects, this paper aims essentially to evaluate the performance of two cutting inserts with PVD and CVD coatings, used in rough milling operations of duplex stainless steel. The cutting parameters and machining conditions were those recommended by the manufacturer and were kept unchanged in all performed tests. The behavior of the PVD- and CVD-coated cutting tools was assessed using three different facets: (a) surface roughness analysis, (b) tool wear evaluation, and (c) the monitoring of vibration levels produced during each test. CVD (TiN/TiCN/Al2O3)-coated inserts showed very good suitability to be used as tools for roughing milling operations when machining super duplex stainless steels.
 - Damage identification in beams using speckle shearography and an optimal spatial samplingPublication . Mininni, M.; Gabriele, S.; Lopes, H.; Santos, J. V. Araújo dosOver the years, the derivatives of modal displacement and rotation fields have been used to localize damage in beams. Usually, the derivatives are computed by applying finite differences. The finite differences propagate and amplify the errors that exist in real measurements, and thus, it is necessary to minimize this problem in order to get reliable damage localizations. A way to decrease the propagation and amplification of the errors is to select an optimal spatial sampling. This paper presents a technique where an optimal spatial sampling of modal rotation fields is computed and used to obtain the modal curvatures. Experimental measurements of modal rotation fields of a beam with single and multiple damages are obtained with shearography, which is an optical technique allowing the measurement of full-fields. These measurements are used to test the validity of the optimal sampling technique for the improvement of damage localization in real structures. An investigation on the ability of a model updating technique to quantify the damage is also reported. The model updating technique is defined by the variations of measured natural frequencies and measured modal rotations and aims at calibrating the values of the second moment of area in the damaged areas, which were previously localized.
 
