Browsing by Author "Leite , Diogo Manuel Carvalho"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Modélisation prédictive des interactions entre bactéries et virus bactériophagesPublication . Leite , Diogo Manuel Carvalho; Martins, António Constantino LopesActuellement, il existe un grave problème de santé publique dû au fait que les bactéries développent des résistances aux antibiotiques, notamment à cause de la surconsommation d’antibiotiques. Achetés en pharmacie, consommé dans les hôpitaux ou indirectement via la nourriture que l’être humain consomme tous les jours, la consommation de ceux-ci ne cesse de s’accroitre. La phagothérapie, ou le traitement par bactériophages est une alternative prometteuse aux antibiotiques, qui consiste à utiliser des virus « mangeurs » de bactéries pour soigner diverses infections d’origine bactérienne. Cette technique de soins possède plusieurs des avantages des antibiotiques sans ses inconvénients, puisque les bactériophages sont très spécifiques et ne s’attaquent par conséquent qu’aux bactéries à l’origine de l’infection, évitant ainsi les effets secondaires dû à la consommation d’antibiotiques par exemple sur la flore intestinale. Le défi lié à cette technique consiste à identifier rapidement le ou les bactériophages capables d’attaquer une bactérie en particulier, une procédure actuellement réalisée en laboratoire en testant toutes les combinaisons possibles, ce qui est coûteux et nécessite plusieurs jours. La solution explorée dans ce projet consiste en l’utilisation de techniques computationnelles pour prédire in silico si une paire bactérie-bactériophage est capable d’interagir ou pas. Parti d’une base de données contenant plus de 1'000 paires bactérie-bactériophage positives et plus de 1'000 paires négatives pour lesquelles le génome de la bactérie et du bactériophage sont connus, la procédure suivante a été mise en place: 1. Extraction de variables pour créer 19 sets de données utilisés pour entraîner les modèles d’apprentissage automatique ; 2. Sélection et entrainement des algorithmes avec un grand nombre de configurations; 3. Recours à l’approche d’agrégation de modèle pour élaborer un système de votation ; 4. Analyse des résultats. Le modèle final qui a été développé a permis d’atteindre une performance de plus de 90% d’accuracy, de mesure F1, de sensibilité et de spécificité sur un set de validation (test set) qui n’avait jamais été utilisé ni pour l’entraînement ni pour la validation croisée. Les bons résultats permettent d’affirmer que l’utilisation de l’apprentissage automatique semble être une approche prometteuse pour répondre à ce problème.
