Browsing by Author "Jos, Angeles"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Analysis of the Use of Cylindrospermopsin and/or Microcystin-Contaminated Water in the Growth, Mineral Content, and Contamination of Spinacia oleracea and Lactuca sativaPublication . Llana-Ruiz-Cabello, Maria; Jos, Angeles; Cameán, Ana; Oliveira, Flavio; Barreiro, Aldo; Machado, Joana; Azevedo, Joana; Pinto, Edgar; Almeida, Agostinho; Campos, Alexandre; Vasconcelos, Vitor; Freitas, MarisaCyanobacteria and cyanotoxins constitute a serious environmental and human health problem. Moreover, concerns are raised with the use of contaminated water in agriculture and vegetable production as this can lead to food contamination and human exposure to toxins as well as impairment in crop development and productivity. The objective of this work was to assess the susceptibility of two green vegetables, spinach and lettuce, to the cyanotoxins microcystin (MC) and cylindrospermopsin (CYN), individually and in mixture. The study consisted of growing both vegetables in hydroponics, under controlled conditions, for 21 days in nutrient medium doped with MC or CYN at 10 μg/L and 50 μg/L, or CYN/MC mixture at 5 + 5 μg/L and 25 + 25 μg/L. Extracts from M. aeruginosa and C. ovalisporum were used as sources of toxins. The study revealed growth inhibition of the aerial part (Leaves) in both species when treated with 50µg/L of MC, CYN and CYN/MC mixture. MC showed to be more harmful to plant growth than CYN. Moreover spinach leaves growth was inhibited by both 5 + 5 and 25 + 25 µg/L CYN/MC mixtures, whereas lettuce leaves growth was inhibited only by 25 + 25 µg/L CYN/MC mixture. Overall, growth data evidence increased sensitivity of spinach to cyanotoxins in comparison to lettuce. On the other hand, plants exposed to CYN/MC mixture showed differential accumulation of CYN and MC. In addition, CYN, but not MC, was translocated from the roots to the leaves. CYN and MC affected the levels of minerals particularly in plant roots. The elements most affected were Ca, K and Mg. However, in leaves K was the mineral that was affected by exposure to cyanotoxins.
- In vitro antimicrobial activity of volatile compounds from the Lichen Pseudevernia furfuracea (L.) Zopf. against multidrug-resistant bacteria and fish pathogensPublication . Essadki, Yasser; Hilmi, Adel; Cascajosa-Lira, Antonio; Girão, Mariana; Darrag, El Mehdi; Rosário Martins, Maria; Romane, Abderrahmane; Zerrifi, Soukaina El Amrani; Mugani, Richard; Tazart, Zakaria; Redouane, El Mahdi; Jos, Angeles; Cameán, Ana M.; Vasconcelos, Vitor; Campos, Alexandre; Khalloufi, Fatima El; Oudra, Brahim; Barakate, Mustapha; Carvalho, Maria de FátimaLichens are symbiotic organisms with unique secondary metabolism. Various metabolites from lichens have shown antimicrobial activity. Nevertheless, very few studies have investigated the antimicrobial potential of the volatile compounds they produce. This study investigates the chemical composition and antimicrobial properties of volatile compounds from Pseudevernia furfuracea collected in two regions of Morocco. Hydrodistillation was used to obtain volatile compounds from samples collected in the High Atlas and Middle Atlas. Gas chromatography–mass spectrometry (GC-MS) analysis identified phenolic cyclic compounds as the primary constituents, with atraric acid and chloroatranol being the most abundant. Additionally, eight compounds were detected in lichens for the first time. The antimicrobial activity of these compounds was assessed using disc diffusion and broth microdilution methods. Both samples demonstrated significant antimicrobial effects against multidrug-resistant human bacteria, reference microorganisms, fish pathogens, and Candida albicans, with minimum inhibitory concentrations (MICs) ranging from 1000 µg/mL to 31.25 µg/mL. This study provides the first report on the volatile compounds from Pseudevernia furfuracea and their antimicrobial effects, particularly against fish pathogens, suggesting their potential as novel antimicrobial agents for human and veterinary use. Further research is warranted to explore these findings in more detail.