Browsing by Author "Fernandes, Ricardo"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Controlled and Secure Sharing Threat IntelligencePublication . Fernandes, Ricardo; Pinto, António Alberto dos SantosCyber threat information sharing platforms have become a useful weapon for dealing with cyberattacks, proactively mitigating them and thus reducing risk exposure. These allow multiple agencies to connect with each other, forming a community, and share that same intrusion information regarding cyberattacks or threats with each other. The Malware Information Sharing Platform (MISP) is particularly developed to promote the open dissemination of information such as intrusion indicators within a community. This exchange of information related to threats or incidents is treated as a data synchronisation procedure between di erent MISP instances, which may belong to one or more communities, companies or organisations. However, this platform presents limitations if its information is considered as classi ed or shared only for a certain period of time. This implies that this information should be treated only in encrypted form. One solution is to use MISP with searchable encryption techniques to impose greater control over information sharing. In this document, it is present a system that guarantees a controlled synchronisation of information between entities through the use of encrypted search techniques to guarantee the con dentiality of the information present in the MISP platform and also the use of synchronisation policies to control the way information is exchanged.
- Elspot: Nord Pool Spot Integration in MASCEM Electricity Market SimulatorPublication . Fernandes, Ricardo; Santos, Gabriel; Praça, Isabel; Pinto, Tiago; Morais, Hugo; Pereira, Ivo; Vale, ZitaThe energy sector in industrialized countries has been restructured in the last years, with the purpose of decreasing electricity prices through the increase in competition, and facilitating the integration of distributed energy resources. However, the restructuring process increased the complexity in market players' interactions and generated emerging problems and new issues to be addressed. In order to provide players with competitive advantage in the market, decision support tools that facilitate the study and understanding of these markets become extremely useful. In this context arises MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), a multi-agent based simulator that models real electricity markets. To reinforce MASCEM with the capability of recreating the electricity markets reality in the fullest possible extent, it is crucial to make it able to simulate as many market models and player types as possible. This paper presents a new negotiation model implemented in MASCEM based on the negotiation model used in day-ahead market (Elspot) of Nord Pool. This is a key module to study competitive electricity markets, as it presents well defined and distinct characteristics from the already implemented markets, and it is a reference electricity market in Europe (the one with the larger amount of traded power).
- Multi-agent simulation of competitive electricity markets: Autonomous systems cooperation for European market modelingPublication . Santos, Gabriel; Pinto, Tiago; Morais, Hugo; Sousa, Tiago M.; Pereira, Ivo F.; Fernandes, Ricardo; Praça, Isabel; Vale, ZitaThe electricity market restructuring, and its worldwide evolution into regional and even continental scales, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in a rising complexity in power systems operation. Several power system simulators have been developed in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex and constantly changing environment. The main contribution of this paper is given by the integration of several electricity market and power system models, respecting to the reality of different countries. This integration is done through the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The continuous development of Multi-Agent System for Competitive Electricity Markets platform provides the means for the exemplification of the usefulness of this ontology. A case study using the proposed multi-agent platform is presented, considering a scenario based on real data that simulates the European Electricity Market environment, and comparing its performance using different market mechanisms. The main goal is to demonstrate the advantages that the integration of various market models and simulation platforms have for the study of the electricity markets’ evolution.
- Towards a unified European electricity market: The contribution of data-mining to support realistic simulation studiesPublication . Pinto, Tiago; Santos, Gabriel; Pereira, Ivo; Fernandes, Ricardo; Sousa, Tiago; Praça, Isabel; Vale, Zita; Morais, HugoWorldwide electricity markets have been evolving into regional and even continental scales. The aim at an efficient use of renewable based generation in places where it exceeds the local needs is one of the main reasons. A reference case of this evolution is the European Electricity Market, where countries are connected, and several regional markets were created, each one grouping several countries, and supporting transactions of huge amounts of electrical energy. The continuous transformations electricity markets have been experiencing over the years create the need to use simulation platforms to support operators, regulators, and involved players for understanding and dealing with this complex environment. This paper focuses on demonstrating the advantage that real electricity markets data has for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations will bring to the participant countries. A case study using MASCEM (Multi-Agent System for Competitive Electricity Markets) is presented, with a scenario based on real data, simulating the European Electricity Market environment, and comparing its performance when using several different market mechanisms.