Browsing by Author "Erlhagen, Wolfram"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Competitive dynamics for behavior coordination in a joint transportation taskPublication . Bicho, Estela; Louro, Luis; Soares, Rui; Erlhagen, WolframWe address the problem of coordinating two non-holonomic mobile robots that move in formation while transporting a long payload. A competitive dynamics is introduced that gradually controls the activation and deactivation of individual behaviors. This process introduces (asymmetrical) hysteresis during behavioral switching. As a result behavioral oscillations, due to noisy information, are eliminated. Results in indoor environments show that if parameter values are chosen within reasonable ranges then, in spite of noise in the robots communi- cation and sensors, the overall robotic system works quite well even in cluttered environments. The robots overt behavior is stable and smooth.
- A Human-like Upper-limb Motion Planner: Generating naturalistic movements for humanoid robotsPublication . Gulletta, Gianpaolo; Costa e Silva, Eliana; Erlhagen, Wolfram; Meulenbroek, Ruud; Costa, Maria Fernanda Pires; Bicho, EstelaAs robots are starting to become part of our daily lives, they must be able to cooperate in a natural and efficient manner with humans to be socially accepted. Human-like morphology and motion are often considered key features for intuitive human–robot interactions because they allow human peers to easily predict the final intention of a robotic movement. Here, we present a novel motion planning algorithm, the Human-like Upper-limb Motion Planner, for the upper limb of anthropomorphic robots, that generates collision-free trajectories with human-like characteristics. Mainly inspired from established theories of human motor control, the planning process takes into account a task-dependent hierarchy of spatial and postural constraints modelled as cost functions. For experimental validation, we generate arm-hand trajectories in a series of tasks including simple point-to-point reaching movements and sequential object-manipulation paradigms. Being a major contribution to the current literature, specific focus is on the kinematics of naturalistic arm movements during the avoidance of obstacles. To evaluate human-likeness, we observe kinematic regularities and adopt smoothness measures that are applied in human motor control studies to distinguish between well-coordinated and impaired movements. The results of this study show that the proposed algorithm is capable of planning arm-hand movements with human-like kinematic features at a computational cost that allows fluent and efficient human–robot interactions.
- Object transportation by multiple mobile robots controlled by attractor dynamics: theory and implementationPublication . Soares, Rui; Bicho, Estela; Machado, Toni; Erlhagen, WolframDynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
- Superquadrics Objects Representation for Robot ManipulationPublication . Silva, Eliana Costa e; Costa, M. Fernanda; Erlhagen, Wolfram; Bicho, EstelaSuperquadric are mathematically quite simple and have the ability to obtain a variety of shapes using low order parameterization. Furthermore they present closed-form equations and therefore can be used in the formulation of robotic movement planning problems, in particular in obstacle-avoidance and grasping constraints. In this paper we explore the modeling of objects using superquadrics. The classical nonlinear optimization problem for fitting shapes is extended by adding nonlinear constraints. The numerical results obtained by two different optimization methods are presented and a comparison of the volume of the superquadrics to the volume of simple ellipsoids is made.