Browsing by Author "Correia, Daniela"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Fish Oil Enzymatic Esterification for Acidity ReductionPublication . Mata, Teresa M.; Correia, Daniela; Andrade, Soraia; Casal, Susana; Ferreira, Isabel M. P. L. V. O.; Matos, Elisabete; Martins, António A.; Caetano, NídiaThe reduction of the fish oil acidity is a significant problem in the rendering industry, as the oil’s range of applications and market value strongly depend on this parameter. In particular, the lower the acidity, the larger the oil’s market value. This work aims to study the potential of enzymatic esterification for reducing the fish oil acidity, by converting the free fatty acids into esters. Thus, four commercial lipases were used and a parametric study was performed to identify the best operating conditions, varying the reaction temperature, enzyme/oil mass ratio and alcohol/FFA mass ratio. All experiments were performed in duplicate with a very good reproducibility of results. Results showed that Lipozyme TL 100L contributed to greater acidity reduction (75% from an initial acid value of 10–14 mg KOH/g oil) for esterification at 40 °C, using ethanol 96% v/v, enzyme/oil and alcohol/FFA mass ratios of 0.01 and 3.24 w/w, respectively, reaching 3.13 mg KOH/g oil of final acid value or 1.57% FFA content. The reaction kinetics were also studied and it was found that a second order rate law as a function of the alcohol and oil concentrations is more adequate, with 35.44 kJ/mol of activation energy and 1.94 × 103 L mol− 1 min− 1 of pre-exponential factor. In conclusion, this work shows that the enzymatic esterification to reduce the fish oil acidity is technically feasible, increasing its market value.
- Valorization of Agro-Industrial Residues: Bioprocessing of Animal Fats to Reduce Their AcidityPublication . Martins, António A.; Andrade, Soraia; Correia, Daniela; Matos, Elisabete; Caetano, Nídia; Mata, Teresa M.Adding value to agro-industrial residues is becoming increasingly important, satisfying needs to promote resources’ use efficiency and a more sustainable and circular economy. This work performs a parametric and kinetic study of enzymatic esterification of lard and tallow with high acidity, obtained by the rendering of slaughter by-products, allowing their use as a feed ingredient and increasing their market value. After an initial analysis of potential enzyme candidates, a Candida antarctica lipase B was selected as a biocatalyst for converting free fatty acids (FFA) to esters, using excess ethanol as the reagent. Results show that the fat acidity can be reduced by at least 67% in up to 3 h of reaction time at 45 °C, using the mass ratios of 3.25 ethanol/FFA and 0.0060 enzyme/fat. Kinetic modelling shows an irreversible second-order rate law, function of FFA, and ethanol concentration better fitting the experimental results. Activation energy is 54.7 kJ/mol and pre-exponential factor is 4.6 × 106 L mol−1 min−1
