Browsing by Author "Bondarchuk, Oleksandr"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Can ZrAlN thin films be used as thermistor sensors for temperature assessment?Publication . Martins, Bruno; Patacas, Carlos; Cavaleiro, Albano; Faia, Pedro; Bondarchuk, Oleksandr; Fernandes, FilipeThe electrical characteristics and conduction mechanisms of ZrAlN thin films for their potential use as thermistor sensors were assessed. Various compositions of Zr1-xAlxN were synthesized by sputtering and studied up to 200 °C to understand their sensitivity and applicability. Among the compositions studied, the ones with x = 0.34 and x = 0.46 showed the highest sensitivities, reaching values close to 3000 K. However, the thermo-resistive properties exhibited by these compositions limited their utilization above 100 °C. Zr1-xAlxN film compositions with x higher than 0.46 showed amorphous structures and were found to be insulative. Composition with x = 0.26, within the cubic phase, showed the most promising electrical properties regarding temperature sensing in the studied range. XPS analysis of this composition confirmed the presence of Zr-N and Al-N bonds, with a Zr3+ oxidation state, which suggests the availability of a free electron contributing to the electrical conduction. Impedance measurements performed at different temperatures for this composition revealed the dominant role of the grain boundaries in the conduction mechanism, based upon electron hopping between grains, overcoming the energy barrier imposed by the grain boundaries. ZrAlN thin films demonstrate negative temperature coefficient (NTC) thermistor behavior, expanding their applications beyond protective coatings to temperature monitoring.
- Electrical properties and thermistor behavior of TiAlN thin films deposited by combinatorial sputteringPublication . Martins, Bruno; Patacas, Carlos; Cavaleiro, Albano; Faia, Pedro; Bondarchuk, Oleksandr; Fernandes, FilipeA combinatorial deposition was performed by direct current magnetron sputtering (DCMS) to develop Ti1-xAlxN thin films with different Ti/Al ratios and investigate the electrical response to temperature. The crystal structure as a function of the x was studied by X-ray diffraction, and sheet resistance response was measured up to 200 ◦C. From x = 0.16 to x = 0.56, the film shows an fcc phase with Al in solid solution in the TiN matrix, whilst, from x ≥ 0.69, a mixture of hcp (AlN) and fcc phases is observed. A negative temperature coefficient (NTC) thermistor behavior was found from x = 0.21 onwards, and a maximum sensitivity β of 1600 K was observed for x = 0.56 and 0.69. One fcc sample (x = 0.46) was selected to analyze the chemical states by X-ray photoelectron spectroscopy and the impedance behavior with the temperature by electrical impedance spectroscopy. The crystal structure, bond states and impedance analysis were compared with an AlN thin film. It is concluded that the conduction mechanism for x = 0.46 is based upon electron hopping, and the effect of the grain boundary is more relevant than the grain at low temperatures. We demonstrate that it is possible to use TiAlN as an NTC-thermistor with different crystal structures and chemical compositions.
- Lithium–copper alloy embedded in 3D porous copper foam with enhanced electrochemical performance toward lithium metal batteriesPublication . Lu, Ziyu; Tai, Zhixin; Yu, Zhipeng; LaGrow, Alec P.; Bondarchuk, Oleksandr; Sousa, Juliana P.S.; Meng, Lijian; Peng, Zhijian; Liu, LifengSuppressing dendrite growth and accommodating volume change, among others, are the main challenges for lithium (Li) metal anode to be used in rechargeable Li batteries. The commercial macroporous copper (Cu) foam current collector may only tackle these challenges to a little extent, and it is usually unable to provide sufficient Li nucleation sites, leading to rapidly increased polarization and unstable cycling performance. Herein, we report a three-dimensional composite anode comprising Li–Cu alloy melt-cast on a commercial Cu foam (CF) current collector (Li–Cu/CF), which can be converted to a unique architecture consisting of Li metal supported by an interconnected CuLix alloy nanowire network formed because of the phase separation, when the molten Li–Cu alloy cools down and gets solidified. Compared to the bare Li foil, the Li–Cu/CF anode shows a smaller polarization and better cycle stability in the carbonate electrolyte at various current densities ranging from 1 to 5 mA/cm2 and is free from dendrite growth upon repeated Li plating/stripping. This can be attributed to the low Li nucleation overpotential and high Coulombic efficiency (96%) during Li plating on and stripping from the thus-obtained hierarchically structured CF collector, as well as the higher proportion of Li2O relative to LiF in the solid-electrolyte interphase layer. Moreover, when assembled in a full cell paired with the LiFePO4 cathode, the Li–Cu/CF anode also exhibits much better rate capability and cycle performance than the bare Li foil. Our work provides a new convenient approach to construct a dendrite-free Li metal anode that can be potentially deployed in the next-generation high energy density rechargeable Li batteries.
