Browsing by Author "Barbosa, J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Assessing resilience potentials in management of occupational safety and health in hospitals: Development and validation of a toolPublication . Afonso-Fernandes, J.; Barbosa, J.; Arezes, P.; Pardo-Ferreira, C.; Rubio-Romero, J.C.; Rodrigues, Matilde Alexandra; Rodrigues, MatildeA resilient Occupational Safety and Health (OSH) management system is crucial for effectively addressing potential future public emergencies, ensuring the continuous protection of workers' safety and health. Therefore, it is essential for organizations, particularly hospitals, to assess their resilient performance and employ tools that are appropriate and tailored to their specific context. This study aims to enhance the understanding of resilience potentials in OSH management within hospital settings. To this end, an assessment tool was developed based on the Resilience Assessment Grid (RAG). A Delphi study involving subject matter experts was conducted to refine the tailored RAG tool. Following this, a pilot test was administered to 404 healthcare professionals across three public hospitals, with subsequent psychometric analysis. Exploratory Factor Analysis (EFA) identified a four-dimensional structure. Goodness-of-fit indices demonstrated acceptable values, confirming the adequacy of the measurement model. Reliability testing indicated that the 29 item assessment tool is both valid and reliable. The tailored RAG tool was successfully validated, enabling the identification of strengths and weaknesses in OSH management.
- Rapid automated method for on-site determination of sulfadiazine in fish farming: a stainless steel veterinary syringe coated with a selective membrane of PVC serving as a potentiometric detector in a flow-injection-analysis systemPublication . Almeida, Sofia A. A.; Amorim, L. R.; Heitor, A. H.; Montenegro, M.C.B.S.M.; Barbosa, J.; Sá, L. C.Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.
- Solid contact PVC membrane electrodes based on neutral or charged carriers for the selective reading of anionic sulfamethoxazole and their application to the analysis of aquaculture waterPublication . Almeida, Sofia A. A.; Heitor, A.M.; Sá, L. C.; Barbosa, J.; Conceição, M. da; Montenegro, M.C.B.S.M.; Sales, M. Goreti F.Sulfamethoxazole (SMX) is among the antibiotics employed in aquaculture for prophylactic and therapeutic reasons. Environmental and food spread may be prevented by controlling its levels in several stages of fish farming. The present work proposes for this purpose new SMX selective electrodes for the potentiometric determination of this sulphonamide in water. The selective membranes were made of polyvinyl chloride (PVC) with tetraphenylporphyrin manganese (III) chloride or cyclodextrin-based acting as ionophores. 2-nitrophenyl octyl ether was employed as plasticizer and tetraoctylammonium, dimethyldioctadecylammonium bromide or potassium tetrakis (4-chlorophenyl) borate was used as anionic or cationic additive. The best analytical performance was reported for ISEs of tetraphenylporphyrin manganese (III) chloride with 50% mol of potassium tetrakis (4-chlorophenyl) borate compared to ionophore. Nersntian behaviour was observed from 4.0 × 10−5 to 1.0 × 10−2 mol/L (10.0 to 2500 µg/mL), and the limit of detection was 1.2 × 10−5 mol/L (3.0 µg/mL). In general, the electrodes displayed steady potentials in the pH range of 6 to 9. Emf equilibrium was reached before 15 s in all concentration levels. The electrodes revealed good discriminating ability in environmental samples. The analytical application to contaminated waters showed recoveries from 96 to 106%.
