ISEP - DM – Engenharia de Inteligência Artificial
Permanent URI for this collection
Browse
Browsing ISEP - DM – Engenharia de Inteligência Artificial by Author "BARBARROXA, RAFAEL ALEXANDRE SILVA"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- MASterFLow: Cadeia de sistemas multiagente inteligentes para a criação de pipelines de aprendizagem automática e aprendizagem federadaPublication . BARBARROXA, RAFAEL ALEXANDRE SILVA; Gomes, Luís Filipe de OliveiraThe growing demand for secure, privacy-preserving AI solutions is particularly noticeable in domains such as renewable energy or healthcare, where sensitive data is involved. As society continues to transition to AI-driven systems, the need for decentralized machine learning systems has become increasingly evident. Traditional machine learning methods rely heavily on centralized datasets, often compromising privacy and security. Although federated learning addresses these concerns by enabling decentralized model training while maintaining data privacy, several challenges remain. These include the complexity of creating, configuring, and managing federated learning models, particularly when dealing with a large number of clients and different configurations. As federated learning grows in popularity, there is also a need for more automated solutions that can simplify this process for users with varying levels of expertise. This dissertation presents MASterFLow, a novel system that combines multi-agent systems with large language models to intelligently create machine learning models and federated learning federations. By integrating LLMs and Retrieval-Augmented Generation, MASterFLow provides an efficient way to configure, execute, and analyze FL training simulations. The system streamlines the process by allowing users to interact with intelligent agents that manage different tasks, such as configuring machine learning models, setting up federated learning simulations, and analyzing training logs. MASterFLow is designed with a user-friendly web-based interface that allows users to engage with the system’s agents and configure simulations according to their needs. Through extensive case studies, the dissertation benchmarks various multi-agent frameworks and demonstrates the effectiveness of combining multi-agent systems and large language models to automate the creation of machine learning and federated learning pipelines. The results indicate that MASterFLow provides a more accessible, secure, and adaptable alternative to traditional machine learning methods, offering improved efficiency and usability for AI development.
