Repository logo
 
Publication

Balancing Plug-In for Stream-Based Classification

dc.contributor.authorde Arriba-Pérez, Francisco
dc.contributor.authorGarcía-Méndez, Silvia
dc.contributor.authorLeal, Fátima
dc.contributor.authorMalheiro, Benedita
dc.contributor.authorBurguillo-Rial, Juan Carlos
dc.date.accessioned2024-03-11T10:55:56Z
dc.date.available2024-03-11T10:55:56Z
dc.date.issued2024-02-16
dc.description.abstractThe latest technological advances drive the emergence of countless real-time data streams fed by users, sensors, and devices. These data sources can be mined with the help of predictive and classification techniques to support decision-making in fields like e-commerce, industry or health. In particular, stream-based classification is widely used to categorise incoming samples on the fly. However, the distribution of samples per class is often imbalanced, affecting the performance and fairness of machine learning models. To overcome this drawback, this paper proposes Bplug, a balancing plug-in for stream-based classification, to minimise the bias introduced by data imbalance. First, the plug-in determines the class imbalance degree and then synthesises data statistically through non-parametric kernel density estimation. The experiments, performed with real data from Wikivoyage and Metro of Porto, show that Bplug maintains inter-feature correlation and improves classification accuracy. Moreover, it works both online and offline.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationde Arriba-Pérez, F., García-Méndez, S., Leal, F., Malheiro, B., Burguillo-Rial, J.C. (2024). Balancing Plug-In for Stream-Based Classification. In: Rocha, A., Adeli, H., Dzemyda, G., Moreira, F., Colla, V. (eds) Information Systems and Technologies. WorldCIST 2023. Lecture Notes in Networks and Systems, vol 799. Springer, Cham. https://doi.org/10.1007/978-3-031-45642-8_6pt_PT
dc.identifier.doi10.1007/978-3-031-45642-8_6pt_PT
dc.identifier.isbn978-3-031-45641-1
dc.identifier.urihttp://hdl.handle.net/10400.22/25140
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationINESC TEC- Institute for Systems and Computer Engineering, Technology and Science
dc.relation.ispartofseriesLecture Notes in Networks and Systems;
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-031-45642-8_6pt_PT
dc.subjectData biaspt_PT
dc.subjectFairnesspt_PT
dc.subjectImbalanced data setspt_PT
dc.subjectMachine learning algorithmpt_PT
dc.subjectStream classificationpt_PT
dc.titleBalancing Plug-In for Stream-Based Classificationpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleINESC TEC- Institute for Systems and Computer Engineering, Technology and Science
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50014%2F2020/PT
oaire.citation.conferencePlaceCham, Switzerlandpt_PT
oaire.citation.endPage74pt_PT
oaire.citation.startPage65pt_PT
oaire.citation.titleWorldCIST 2023: Information Systems and Technologiespt_PT
oaire.citation.volume799pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLeal
person.familyNameBENEDITA CAMPOS NEVES MALHEIRO
person.givenNameFátima
person.givenNameMARIA
person.identifier.ciencia-id2211-3EC7-B4B6
person.identifier.ciencia-id7A15-08FC-4430
person.identifier.orcid0000-0003-4418-2590
person.identifier.orcid0000-0001-9083-4292
person.identifier.ridY-3460-2019
person.identifier.scopus-author-id57190765181
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication8e77ca2d-3cb2-4346-927b-a706a5580c9e
relation.isAuthorOfPublicationbabd4fda-654a-4b59-952d-6113eebbb308
relation.isAuthorOfPublication.latestForDiscoverybabd4fda-654a-4b59-952d-6113eebbb308
relation.isProjectOfPublication7a2d9a82-ee07-4c57-bbbf-2d88b942688d
relation.isProjectOfPublication.latestForDiscovery7a2d9a82-ee07-4c57-bbbf-2d88b942688d

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
WorldCist_2023_Plugin.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: