Publication
CO2 Concentration Forecasting in an Office Using Artificial Neural Network
dc.contributor.author | Khorram Ghahfarrokhi, Mahsa | |
dc.contributor.author | Faria, Pedro | |
dc.contributor.author | Abrishambaf, Omid | |
dc.contributor.author | Vale, Zita | |
dc.contributor.author | Soares, João | |
dc.date.accessioned | 2021-09-22T15:18:49Z | |
dc.date.available | 2021-09-22T15:18:49Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Uncertainty is the state of all operation, components, and objective environment that makes impossible to describe the existing state. Forecasting techniques are essential in the field of knowledge development to overcome the uncertainty to increase the efficiency of all systems. In this paper, artificial neural network algorithm is applied to forecast the CO2 concentration in an office building. The algorithm is implemented in Rstudio software using neural net package. The case study of the paper presents two scenarios with different input data to propose the impacts of train data on forecasting algorithms results. The used dataset in the case study is real data that have been monitored for 2 years. The obtained results of algorithms show the predicted values of CO2 concentration in one office for 600 minutes of a working day. The mean percentage error means absolute percentage error, and standard deviation of predicted data for both scenarios are presented in results section. | pt_PT |
dc.description.sponsorship | The present work was done and funded in the scope of the following projects: COLORS Project, CEECIND/02887/2017, and UID/EEA/00760/2019 funded by FEDER Funds through COMPETE program and National Funds through FCT. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1109/ISAP48318.2019.9065944 | pt_PT |
dc.identifier.isbn | 978-1-7281-3192-4 | |
dc.identifier.uri | http://hdl.handle.net/10400.22/18488 | |
dc.language.iso | eng | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation | CEECIND/02887/2017 | pt_PT |
dc.relation | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9065944 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | pt_PT |
dc.subject | Artificial Neural Network | pt_PT |
dc.subject | CO2 | pt_PT |
dc.subject | Forecasting | pt_PT |
dc.title | CO2 Concentration Forecasting in an Office Using Artificial Neural Network | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F00760%2F2019/PT | |
oaire.citation.conferencePlace | New Delhi, India | pt_PT |
oaire.citation.endPage | 6 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP) | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Khorram Ghahfarrokhi | |
person.familyName | Faria | |
person.familyName | Abrishambaf | |
person.familyName | Vale | |
person.familyName | Soares | |
person.givenName | Mahsa | |
person.givenName | Pedro | |
person.givenName | Omid | |
person.givenName | Zita | |
person.givenName | João | |
person.identifier | 632184 | |
person.identifier | 1043580 | |
person.identifier.ciencia-id | 9719-75D7-B785 | |
person.identifier.ciencia-id | B212-2309-F9C3 | |
person.identifier.ciencia-id | 7F1A-B942-5BD2 | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.ciencia-id | 1612-8EA8-D0E8 | |
person.identifier.orcid | 0000-0002-0581-2898 | |
person.identifier.orcid | 0000-0002-5982-8342 | |
person.identifier.orcid | 0000-0002-4249-8367 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.orcid | 0000-0002-4172-4502 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 57201796142 | |
person.identifier.scopus-author-id | 57189232486 | |
person.identifier.scopus-author-id | 7004115775 | |
person.identifier.scopus-author-id | 35436109600 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 37496d99-b654-4316-9051-c9e39ee07c75 | |
relation.isAuthorOfPublication | 35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6 | |
relation.isAuthorOfPublication | 72f5a93f-febb-46bf-a69d-50881f80cb41 | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
relation.isAuthorOfPublication.latestForDiscovery | 37496d99-b654-4316-9051-c9e39ee07c75 | |
relation.isProjectOfPublication | 9b771c00-8c2c-4226-b06d-e33ef11f0d32 | |
relation.isProjectOfPublication.latestForDiscovery | 9b771c00-8c2c-4226-b06d-e33ef11f0d32 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- COM_GECAD_Mahsa_ISAP_2019.pdf
- Size:
- 743.84 KB
- Format:
- Adobe Portable Document Format