Repository logo
 
Publication

A 2020 perspective on “Scalable modelling and recommendation using wiki-based crowdsourced repositories:” Fairness, scalability, and real-time recommendation

dc.contributor.authorLeal, Fátima
dc.contributor.authorVeloso, Bruno
dc.contributor.authorMalheiro, Benedita
dc.contributor.authorGonzález-Vélez, Horacio
dc.contributor.authorCarlos Burguillo, Juan
dc.date.accessioned2020-02-17T15:03:02Z
dc.date.embargo2119
dc.date.issued2020
dc.description.abstractWiki-based crowdsourced data sources generally lack reliability, as their provenance is not intrinsically marshalled. By using recommendation, one may arguably assess the reliability of wiki-based repositories in order to identify the most interesting articles for a given domain. In this commentary, we explore current trends in scalable modelling and recommendation methods based on side information such as the quality and popularity of wiki articles. The systematic parallelization of such profiling and recommendation algorithms allows the concurrent processing of distributed crowdsourced Wikidata repositories. These algorithms, which perform incremental updating, need further research to improve the performance and generate up-to-date high-quality recommendations. This article builds upon our previous work (Leal et al., 2019) by extending the literature review and identifying important trends and challenges pertaining to crowdsourcing platforms, particularly those of Wikidata provenance.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.elerap.2020.100951pt_PT
dc.identifier.issn1567-4223
dc.identifier.urihttp://hdl.handle.net/10400.22/15481
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.publisherversionhttps://doi.org/10.1016/j.elerap.2020.100951pt_PT
dc.subjectAlgorithmic Fairnesspt_PT
dc.subjectCrowdsourcingpt_PT
dc.subjectData Stream Miningpt_PT
dc.subjectProfilingpt_PT
dc.subjectRecommendationpt_PT
dc.subjectScalabilitypt_PT
dc.titleA 2020 perspective on “Scalable modelling and recommendation using wiki-based crowdsourced repositories:” Fairness, scalability, and real-time recommendationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.startPage100951pt_PT
oaire.citation.titleElectronic Commerce Research and Applicationspt_PT
person.familyNameBENEDITA CAMPOS NEVES MALHEIRO
person.givenNameMARIA
person.identifier.ciencia-id7A15-08FC-4430
person.identifier.orcid0000-0001-9083-4292
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationbabd4fda-654a-4b59-952d-6113eebbb308
relation.isAuthorOfPublication.latestForDiscoverybabd4fda-654a-4b59-952d-6113eebbb308

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_LSA_MBM_2019.pdf
Size:
213.09 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: