Repository logo
 
Publication

DSO Contract Market for Demand Response Using Evolutionary Computation

dc.contributor.authorLacerda, Eduardo
dc.contributor.authorLezama, Fernando
dc.contributor.authorSoares, João
dc.contributor.authorVale, Zita
dc.date.accessioned2023-03-14T11:06:16Z
dc.date.available2023-03-14T11:06:16Z
dc.date.issued2021
dc.description.abstractIn this article, a cost optimization problem in local energy markets is analyzed considering fixed-term flexibility contracts between the DSO and aggregators. The DSO procures flexibility while aggregators of different types (e.g., conventional demand response or thermo-load aggregators) offer the service. We solve the proposed model using evolutionary algorithms based on the well-known differential evolution (DE). First, a parameter-tuning analysis is done to assess the impact of the DE parameters on the quality of solutions to the problem. Later, after finding the best set of parameters for the "tuned" DE strategies, we compare their performance with other self-adaptive parameter algorithms, namely the HyDE, HyDE-DF, and vortex search algorithms. Results show that with the identification of the best set of parameters to be used for each strategy, the tuned DE versions lead to better results than the other tested EAs. Overall, the algorithms are able to find near-optimal solutions to the problem and can be considered an alternative solver for more complex instances of the model.pt_PT
dc.description.sponsorshipThis research has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020) and National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEIEEE/28983/2017(CENERGETIC), CEECIND/02814/2017 (Joao Soares grant), and UIDB/000760/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/CEC45853.2021.9504987pt_PT
dc.identifier.isbn978-1-7281-8393-0
dc.identifier.urihttp://hdl.handle.net/10400.22/22476
dc.language.isoengpt_PT
dc.publisherIEEEpt_PT
dc.relationPTDC/EEIEEE/28983/2017pt_PT
dc.relationNot Available
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9504987pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectDemand responsept_PT
dc.subjectAggregator-DSO marketpt_PT
dc.subjectDifferential evolutionpt_PT
dc.subjectEvolutionary computationpt_PT
dc.titleDSO Contract Market for Demand Response Using Evolutionary Computationpt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleNot Available
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F02814%2F2017%2FCP1417%2FCT0002/PT
oaire.citation.conferencePlaceKraków, Polandpt_PT
oaire.citation.endPage240pt_PT
oaire.citation.startPage233pt_PT
oaire.citation.title2021 IEEE Congress on Evolutionary Computation (CEC)pt_PT
oaire.fundingStreamCEEC IND 2017
person.familyNameLezama
person.familyNameSoares
person.familyNameVale
person.givenNameFernando
person.givenNameJoão
person.givenNameZita
person.identifier1043580
person.identifier632184
person.identifier.ciencia-idE31F-56D6-1E0F
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8638-8373
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-6945-2017
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id36810077500
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication6a55317b-92c2-404f-8542-c7a73061cc9b
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isProjectOfPublication7f9ebad6-9f7d-4225-8694-48de17ea8b51
relation.isProjectOfPublication.latestForDiscovery7f9ebad6-9f7d-4225-8694-48de17ea8b51

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_CEC_2021.pdf
Size:
358.59 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: