Repository logo
 
Publication

Negotiation context analysis in electricity markets

dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.contributor.authorSousa, Tiago M.
dc.contributor.authorPraça, Isabel
dc.date.accessioned2016-01-07T15:47:43Z
dc.date.available2016-01-07T15:47:43Z
dc.date.issued2015-06
dc.description.abstractContextualization is critical in every decision making process. Adequate responses to problems depend not only on the variables with direct influence on the outcomes, but also on a correct contextualization of the problem regarding the surrounding environment. Electricity markets are dynamic environments with increasing complexity, potentiated by the last decades' restructuring process. Dealing with the growing complexity and competitiveness in this sector brought the need for using decision support tools. A solid example is MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), whose players' decisions are supported by another multiagent system – ALBidS (Adaptive Learning strategic Bidding System). ALBidS uses artificial intelligence techniques to endow market players with adaptive learning capabilities that allow them to achieve the best possible results in market negotiations. This paper studies the influence of context awareness in the decision making process of agents acting in electricity markets. A context analysis mechanism is proposed, considering important characteristics of each negotiation period, so that negotiating agents can adapt their acting strategies to different contexts. The main conclusion is that context-dependant responses improve the decision making process. Suiting actions to different contexts allows adapting the behaviour of negotiating entities to different circumstances, resulting in profitable outcomes.pt_PT
dc.identifier.doi10.1016/j.energy.2015.03.017pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/7322
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.ispartofseriesEnergy;Vol. 85
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0360544215003114pt_PT
dc.subjectAdaptive learningpt_PT
dc.subjectArtificial intelligencept_PT
dc.subjectContext awarenesspt_PT
dc.subjectElectricity marketspt_PT
dc.subjectMultiagent simulationpt_PT
dc.titleNegotiation context analysis in electricity marketspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage93pt_PT
oaire.citation.startPage78pt_PT
oaire.citation.volume85pt_PT
person.familyNamePinto
person.familyNameVale
person.familyNamePraça
person.givenNameTiago
person.givenNameZita
person.givenNameIsabel
person.identifierR-000-T7J
person.identifier632184
person.identifier299522
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0002-2519-9859
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.ridK-8430-2014
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
person.identifier.scopus-author-id22734900800
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublication.latestForDiscoveryee4ecacd-c6c6-41e8-bca1-21a60ff05f50

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART2_TiagoPinto_2015_GECAD.pdf
Size:
5.6 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: