Publication
Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection
| dc.contributor.author | Kurunathan, John Harrison | |
| dc.contributor.author | Li, Kai | |
| dc.contributor.author | Ni, Wei | |
| dc.contributor.author | Tovar, Eduardo | |
| dc.contributor.author | Dressler, Falko | |
| dc.date.accessioned | 2021-11-02T10:42:58Z | |
| dc.date.available | 2021-11-02T10:42:58Z | |
| dc.date.issued | 2021-10-04 | |
| dc.description.abstract | Autonomous UAV cruising is gaining attention dueto its flexible deployment in remote sensing, surveillance, andreconnaissance. A critical challenge in data collection with theautonomous UAV is the buffer overflows at the ground sensorsand packet loss due to lossy airborne channels. Trajectoryplanning of the UAV is vital to alleviate buffer overflows as wellas channel fading. In this work, we propose a Deep DeterministicPolicy Gradient based Cruise Control (DDPG-CC) to reducethe overall packet loss through online training of headings andcruise velocity of the UAV, as well as the selection of the groundsensors for data collection. Preliminary performance evaluationdemonstrates that DDPG-CC reduces the packet loss rate byunder 5% when sufficient training is provided to the UAV. | pt_PT |
| dc.description.sponsorship | This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); also by the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by national funds through the FCT, within project ARNET (POCI01-0145-FEDER-029074). | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.doi | 10.1109/LCN52139.2021.9525022 | pt_PT |
| dc.identifier.uri | http://hdl.handle.net/10400.22/18804 | |
| dc.language.iso | eng | pt_PT |
| dc.relation | UIDP/UIDB/04234/2020 | pt_PT |
| dc.relation | POCI01-0145-FEDER-029074 | pt_PT |
| dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9525022 | pt_PT |
| dc.subject | UAV-aided WSN | pt_PT |
| dc.subject | Autonomous UAV | pt_PT |
| dc.subject | Cruise control | pt_PT |
| dc.subject | Deep reinforcement learning | pt_PT |
| dc.title | Deep Reinforcement Learning for Persistent Cruise Control in UAV-aided Data Collection | pt_PT |
| dc.type | conference object | |
| dspace.entity.type | Publication | |
| oaire.citation.conferencePlace | Edmonton, AB, Canada | pt_PT |
| oaire.citation.title | 2021 IEEE 46th Conference on Local Computer Networks (LCN) | pt_PT |
| person.familyName | Kurunathan | |
| person.familyName | Li | |
| person.familyName | Tovar | |
| person.givenName | John Harrison | |
| person.givenName | Kai | |
| person.givenName | Eduardo | |
| person.identifier | 1490257 | |
| person.identifier.ciencia-id | 4E1B-CFFC-07A8 | |
| person.identifier.ciencia-id | EE10-B822-16ED | |
| person.identifier.ciencia-id | 6017-8881-11E8 | |
| person.identifier.orcid | 0000-0002-1270-1213 | |
| person.identifier.orcid | 0000-0002-0517-2392 | |
| person.identifier.orcid | 0000-0001-8979-3876 | |
| person.identifier.scopus-author-id | 7006312557 | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | f16021ed-349d-4a21-be66-1ee3ef42b8c4 | |
| relation.isAuthorOfPublication | 21f3fb85-19c2-4c89-afcd-3acb27cedc5e | |
| relation.isAuthorOfPublication | 80b63d8a-2e6d-484e-af3c-55849d0cb65e | |
| relation.isAuthorOfPublication.latestForDiscovery | f16021ed-349d-4a21-be66-1ee3ef42b8c4 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- COM_CISTER-TR-211008_2021.pdf
- Size:
- 292 KB
- Format:
- Adobe Portable Document Format
