Repository logo
 
Publication

2017 IEEE competition on modern heuristic optimizers for smart grid operation: Testbeds and results

dc.contributor.authorLezama, Fernando
dc.contributor.authorSoares, João
dc.contributor.authorVale, Zita
dc.contributor.authorRueda, Jose
dc.contributor.authorRivera, Sergio
dc.contributor.authorElrich, István
dc.date.accessioned2021-03-08T17:29:24Z
dc.date.available2021-05-17T00:30:21Z
dc.date.issued2019
dc.description.abstractThis paper summarizes the two testbeds, datasets, and results of the IEEE PES Working Group on Modern Heuristic Optimization (WGMHO) 2017 Competition on Smart Grid Operation Problems. The competition is organized with the aim of closing the gap between theory and real-world applications of evolutionary computation. Testbed 1 considers stochastic OPF (Optimal Power Flow) based Active-Reactive Power Dispatch (ARPD) under uncertainty and Testbed 2 large-scale optimal scheduling of distributed energy resources. Classical optimization methods are not able to deal with the proposed optimization problems within a reasonable time, often requiring more than one day to provide the optimal solution and a significant amount of memory to perform the computation. The proposed problems can be addressed using modern heuristic optimization approaches, enabling the achievement of good solutions in much lower execution times, adequate for the envisaged decision-making processes. Results from the competition show that metaheuristics can be successfully applied in search of efficient near-optimal solutions for the Stochastic Optimal Power Flow and large-scale energy resource management problems.pt_PT
dc.description.sponsorshipThis work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and Project SIMOCE (ANI|P2020 17690). It also received funding from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013. We would like to express our gratitude to the 7 participants of this competition: UNESP-LaPSEE, INESC TEC-CEFET MG, CHARUSAT, UNAL, UFMG, NTU-EEE, UB-UTD.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.swevo.2018.05.005pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/17307
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relationEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2210650218300592?via%3Dihubpt_PT
dc.subjectEvolutionary computationpt_PT
dc.subjectPower systemspt_PT
dc.subjectMetaheuristicspt_PT
dc.subjectOptimizationpt_PT
dc.subjectSmart gridspt_PT
dc.subjectSwarm intelligencept_PT
dc.title2017 IEEE competition on modern heuristic optimizers for smart grid operation: Testbeds and resultspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleEnabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F00760%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/641794/EU
oaire.citation.endPage427pt_PT
oaire.citation.startPage420pt_PT
oaire.citation.titleSwarm and Evolutionary Computationpt_PT
oaire.citation.volume44pt_PT
oaire.fundingStream5876
oaire.fundingStreamH2020
person.familyNameLezama
person.familyNameSoares
person.familyNameVale
person.givenNameFernando
person.givenNameJoão
person.givenNameZita
person.identifier1043580
person.identifier632184
person.identifier.ciencia-idE31F-56D6-1E0F
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8638-8373
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-6945-2017
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id36810077500
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameEuropean Commission
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication6a55317b-92c2-404f-8542-c7a73061cc9b
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isProjectOfPublication237af9d5-70ed-4e45-9f10-3853d860255e
relation.isProjectOfPublication4a092e97-cc2f-4f57-8d3c-cf1709963516
relation.isProjectOfPublication.latestForDiscovery237af9d5-70ed-4e45-9f10-3853d860255e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_GECAD_FLezama_2019.pdf
Size:
362.42 KB
Format:
Adobe Portable Document Format