Publication
2017 IEEE competition on modern heuristic optimizers for smart grid operation: Testbeds and results
dc.contributor.author | Lezama, Fernando | |
dc.contributor.author | Soares, João | |
dc.contributor.author | Vale, Zita | |
dc.contributor.author | Rueda, Jose | |
dc.contributor.author | Rivera, Sergio | |
dc.contributor.author | Elrich, István | |
dc.date.accessioned | 2021-03-08T17:29:24Z | |
dc.date.available | 2021-05-17T00:30:21Z | |
dc.date.issued | 2019 | |
dc.description.abstract | This paper summarizes the two testbeds, datasets, and results of the IEEE PES Working Group on Modern Heuristic Optimization (WGMHO) 2017 Competition on Smart Grid Operation Problems. The competition is organized with the aim of closing the gap between theory and real-world applications of evolutionary computation. Testbed 1 considers stochastic OPF (Optimal Power Flow) based Active-Reactive Power Dispatch (ARPD) under uncertainty and Testbed 2 large-scale optimal scheduling of distributed energy resources. Classical optimization methods are not able to deal with the proposed optimization problems within a reasonable time, often requiring more than one day to provide the optimal solution and a significant amount of memory to perform the computation. The proposed problems can be addressed using modern heuristic optimization approaches, enabling the achievement of good solutions in much lower execution times, adequate for the envisaged decision-making processes. Results from the competition show that metaheuristics can be successfully applied in search of efficient near-optimal solutions for the Stochastic Optimal Power Flow and large-scale energy resource management problems. | pt_PT |
dc.description.sponsorship | This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and Project SIMOCE (ANI|P2020 17690). It also received funding from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013. We would like to express our gratitude to the 7 participants of this competition: UNESP-LaPSEE, INESC TEC-CEFET MG, CHARUSAT, UNAL, UFMG, NTU-EEE, UB-UTD. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1016/j.swevo.2018.05.005 | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.22/17307 | |
dc.language.iso | eng | pt_PT |
dc.publisher | Elsevier | pt_PT |
dc.relation | Enabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach | |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S2210650218300592?via%3Dihub | pt_PT |
dc.subject | Evolutionary computation | pt_PT |
dc.subject | Power systems | pt_PT |
dc.subject | Metaheuristics | pt_PT |
dc.subject | Optimization | pt_PT |
dc.subject | Smart grids | pt_PT |
dc.subject | Swarm intelligence | pt_PT |
dc.title | 2017 IEEE competition on modern heuristic optimizers for smart grid operation: Testbeds and results | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Enabling Demand Response for short and real-time Efficient And Market Based smart Grid Operation - An intelligent and real-time simulation approach | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F00760%2F2013/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/EC/H2020/641794/EU | |
oaire.citation.endPage | 427 | pt_PT |
oaire.citation.startPage | 420 | pt_PT |
oaire.citation.title | Swarm and Evolutionary Computation | pt_PT |
oaire.citation.volume | 44 | pt_PT |
oaire.fundingStream | 5876 | |
oaire.fundingStream | H2020 | |
person.familyName | Lezama | |
person.familyName | Soares | |
person.familyName | Vale | |
person.givenName | Fernando | |
person.givenName | João | |
person.givenName | Zita | |
person.identifier | 1043580 | |
person.identifier | 632184 | |
person.identifier.ciencia-id | E31F-56D6-1E0F | |
person.identifier.ciencia-id | 1612-8EA8-D0E8 | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.orcid | 0000-0001-8638-8373 | |
person.identifier.orcid | 0000-0002-4172-4502 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.rid | A-6945-2017 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 36810077500 | |
person.identifier.scopus-author-id | 35436109600 | |
person.identifier.scopus-author-id | 7004115775 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100008530 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | European Commission | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
relation.isAuthorOfPublication | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication.latestForDiscovery | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isProjectOfPublication | 237af9d5-70ed-4e45-9f10-3853d860255e | |
relation.isProjectOfPublication | 4a092e97-cc2f-4f57-8d3c-cf1709963516 | |
relation.isProjectOfPublication.latestForDiscovery | 237af9d5-70ed-4e45-9f10-3853d860255e |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ART_GECAD_FLezama_2019.pdf
- Size:
- 362.42 KB
- Format:
- Adobe Portable Document Format