Repository logo
 
Publication

Congestion management in active distribution networks through demand response implementation

dc.contributor.authorFotouhi Ghazvini, Mohammad Ali
dc.contributor.authorLipari, Gianluca
dc.contributor.authorPau, Marco
dc.contributor.authorPonci, Ferdinanda
dc.contributor.authorMonti, Antonello
dc.contributor.authorSoares, João
dc.contributor.authorCastro, Rui
dc.contributor.authorVale, Zita
dc.date.accessioned2021-02-18T10:18:45Z
dc.date.embargo2120
dc.date.issued2019
dc.description.abstractDespite the positive contributions of controllable electric loads such as electric vehicles (EV) and heat pumps (HP) in providing demand-side flexibility, uncoordinated operation of these loads may lead to congestions at distribution networks. This paper aims to propose a market-based mechanism to alleviate distribution network congestions through a centralized coordinated home energy management system (HEMS). In this model, the distribution system operator (DSO) implements dynamic tariffs (DT) and daily power-based network tariffs (DPT) to manage congestions induced by EVs and HPs. In this framework, the HP and EV loads are directly controlled by the retail electricity provider (REP). As DT and DPT price signals target the aggregated nodal demand, the individual uncoordinated HEMS models operating under these price signals are unable to effectively alleviate congestion. A large number of flexible residential customers with EV and HP loads are modeled in this paper, and the REP schedules the consumption based on the comfort preferences of the customers through HEMS. The effectiveness of the market-based concept in managing the congestion is demonstrated by using the IEEE 33-bus distribution system with 706 residential customers. The case study results show that considering both pricing systems can considerably mitigate the overloading occurrences in distribution lines, while applying DTs without considering DPTs may lead to severe overloading occurrences at some periods.pt_PT
dc.description.sponsorshipThe present work was done and funded in the scope of the following projects: H2020 DREAM-GO Project (Marie Sklodowska-Curie grant agreement No 641794); AVIGAE Project (P2020 - 3401); UID/EEA/00760/2013 funded by FEDER, Spain funds through COMPETE program and by national funds through Fundação para a Ciência e a Tecnologia (FCT), Portugal; and SFRH/BD/94688/2013 (Mohammd Ali Fotouhi Ghazvini PhD grant).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.segan.2018.100185pt_PT
dc.identifier.issn2352-4677
dc.identifier.urihttp://hdl.handle.net/10400.22/17030
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationSMART POWER SYSTEM OPERATION UNDER UNCERTAINTY IN SHORT-TERM ELECTRICITY MARKETS
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S2352467718300699?via%3Dihubpt_PT
dc.subjectCongestion managementpt_PT
dc.subjectControllable loadpt_PT
dc.subjectDemand responsept_PT
dc.subjectHome energy management systempt_PT
dc.titleCongestion management in active distribution networks through demand response implementationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleSMART POWER SYSTEM OPERATION UNDER UNCERTAINTY IN SHORT-TERM ELECTRICITY MARKETS
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F94688%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F00760%2F2013/PT
oaire.citation.startPage100185pt_PT
oaire.citation.titleSustainable Energy, Grids and Networkspt_PT
oaire.citation.volume17pt_PT
oaire.fundingStream5876
person.familyNameFotouhi Ghazvini
person.familyNameSoares
person.familyNameVale
person.givenNameMohammad Ali
person.givenNameJoão
person.givenNameZita
person.identifier1043580
person.identifier632184
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-0638-7221
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id54782572900
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationb620503a-2c96-4c59-9147-c7a439afbe88
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isProjectOfPublicationf9c4e185-e9bc-4200-a4bd-1856e4c6e3eb
relation.isProjectOfPublication237af9d5-70ed-4e45-9f10-3853d860255e
relation.isProjectOfPublication.latestForDiscovery237af9d5-70ed-4e45-9f10-3853d860255e

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_GECAD_2019.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format