Repository logo
 
Publication

Simulated annealing metaheuristic to solve the optimal power flow

dc.contributor.authorSousa, Tiago
dc.contributor.authorSoares, João
dc.contributor.authorVale, Zita
dc.contributor.authorMorais, H.
dc.contributor.authorFaria, Pedro
dc.date.accessioned2013-04-17T11:26:13Z
dc.date.available2013-04-17T11:26:13Z
dc.date.issued2011
dc.date.updated2013-04-12T16:43:26Z
dc.description.abstractThe optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.por
dc.identifier.doi10.1109/PES.2011.6039543
dc.identifier.isbn978-1-4577-1000-1
dc.identifier.isbn978-1-4577-1001-8
dc.identifier.issn1944-9925
dc.identifier.urihttp://hdl.handle.net/10400.22/1376
dc.language.isoengpor
dc.publisherIEEEpor
dc.relation.publisherversionhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6039543por
dc.subjectArtificial intelligencepor
dc.subjectEconomic dispatchpor
dc.subjectOptimal power flowpor
dc.subjectOptimization methodpor
dc.subjectSimulated annealingpor
dc.titleSimulated annealing metaheuristic to solve the optimal power flowpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceDetroit, MI, USA, 2011por
oaire.citation.titleIEEE Power and Energy Society General Meetingpor
person.familyNameSoares
person.familyNameVale
person.familyNameFaria
person.givenNameJoão
person.givenNameZita
person.givenNamePedro
person.identifier1043580
person.identifier632184
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0002-5982-8342
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id7004115775
rcaap.rightsclosedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
COM_TSousa_2011_GECAD.pdf
Size:
653.37 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: