Repository logo
 
Publication

Feature Extraction in Densely Sensed Environments: Extensions to Multiple Broadcast Domains

dc.contributor.authorVahabi, Maryam
dc.contributor.authorGupta, Vikram
dc.contributor.authorAlbano, Michele
dc.contributor.authorRangarajan, Raghuraman
dc.contributor.authorTovar, Eduardo
dc.date.accessioned2016-01-20T15:02:16Z
dc.date.available2016-01-20T15:02:16Z
dc.date.issued2015
dc.description.abstractThe vision of the Internet of Things (IoT) includes large and dense deployment of interconnected smart sensing and monitoring devices. This vast deployment necessitates collection and processing of large volume of measurement data. However, collecting all the measured data from individual devices on such a scale may be impractical and time consuming. Moreover, processing these measurements requires complex algorithms to extract useful information. Thus, it becomes imperative to devise distributed information processing mechanisms that identify application-specific features in a timely manner and with a low overhead. In this article, we present a feature extraction mechanism for dense networks that takes advantage of dominance-based medium access control (MAC) protocols to (i) efficiently obtain global extrema of the sensed quantities, (ii) extract local extrema, and (iii) detect the boundaries of events, by using simple transforms that nodes employ on their local data. We extend our results for a large dense network with multiple broadcast domains (MBD). We discuss and compare two approaches for addressing the challenges with MBD and we show through extensive evaluations that our proposed distributed MBD approach is fast and efficient at retrieving the most valuable measurements, independent of the number sensor nodes in the network.pt_PT
dc.identifier.doi10.1155/2015/457537pt_PT
dc.identifier.issn1550-1329
dc.identifier.urihttp://hdl.handle.net/10400.22/7424
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherHindawipt_PT
dc.relationProject no. NORTE- 07-0124-FEDER-000063 (BEST-CASE, New Frontiers)pt_PT
dc.relationFCOMP-01-0124-FEDER-037281 (CISTER)pt_PT
dc.relationFCOMP-01-0124-FEDER-020312 (SMARTSKIN)pt_PT
dc.relationFCOMP-01-0124-FEDER-028990 (PATTERN)pt_PT
dc.relationEU ARTEMIS JU under Grant no. 621353 (DEWI)pt_PT
dc.relationFCT PhD Grant no. SFRH/BD/67096/2009.pt_PT
dc.relation.ispartofseriesInternational Journal of Distributed Sensor Networks;2015
dc.relation.publisherversionhttp://www.hindawi.com/journals/ijdsn/2015/457537/pt_PT
dc.titleFeature Extraction in Densely Sensed Environments: Extensions to Multiple Broadcast Domainspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage21pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleInternational Journal of Distributed Sensor Networkspt_PT
oaire.citation.volume2015pt_PT
person.familyNameAlbano
person.familyNameTovar
person.givenNameMichele
person.givenNameEduardo
person.identifier.ciencia-id6017-8881-11E8
person.identifier.orcid0000-0002-3777-9981
person.identifier.orcid0000-0001-8979-3876
person.identifier.ridQ-2177-2015
person.identifier.scopus-author-id24490820900
person.identifier.scopus-author-id7006312557
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationf5fe64fe-e14c-499c-809d-f230cce5c01d
relation.isAuthorOfPublication80b63d8a-2e6d-484e-af3c-55849d0cb65e
relation.isAuthorOfPublication.latestForDiscovery80b63d8a-2e6d-484e-af3c-55849d0cb65e

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_CISTER_2015.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: