| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 20.68 MB | Adobe PDF |
Advisor(s)
Abstract(s)
O presente trabalho propõe o desenvolvimento de uma ferramenta computacional destinada ao dimensionamento e verificação dos parâmetros de proteções elétricas nos sistemas fotovoltaicos, que tenha conformidade com as normas IEC 60364-7-712, EN 50549-1 e 2 e com o Decreto-Lei n.º 15/2022. A crescente integração de sistemas de energia solar na rede elétrica portuguesa tem vindo a impor novos desafios técnicos e normativos, nomeadamente no que se refere à coordenação das proteções, à segurança das instalações e à compatibilidade entre as exigências normativas e os equipamentos comercialmente disponíveis. Face à variação da energia solar, torna-se necessário assegurar a estabilidade da tensão e a frequência da rede, assim como prevenir fenómenos de sobretensão, sobrecorrente, falhas de isolamento e riscos de incêndio. A legislação nacional e europeia impõe requisitos específicos para cada tipologia de instalação — seja de autoconsumo ou de injeção na rede — incluindo a obrigatoriedade de proteções diferenciais, homopolares e de sobretensão, dependendo da potência instalada e da configuração do sistema. Para dar resposta a estas exigências, a presente investigação desenvolve uma ferramenta em Python com interface gráfica, capaz de dimensionar automaticamente as proteções de corrente contínua (CC) e alternada (CA), verificar a adequação normativa das proteções contra choques elétricos, sobretensões transitórias e descargas atmosféricas, e validar o
cumprimento dos setpoints de tensão e frequência segundo a EN 50549-1 e -2. O programa incorpora ainda cálculos de queda de tensão, corrente de curto-circuito, proteção diferencial (RCD), sistemas de ligação à terra (TT, TN, IT) e análise de risco em conformidade com o RTIEBT, para proporcionar ao projetista uma ferramenta de apoio técnico e normativo de elevado rigor. A estrutura do trabalho compreende a análise das normas técnicas aplicáveis, a conformidade
e a sua implementação no programa, assim como a caracterização dos componentes do sistema fotovoltaico (módulos, inversores e cablagem), a definição de cenários de dimensionamento, e a validação dos resultados obtidos através da comparação com softwares de referência, como o PVsyst e o PV*SOL, bem como com dados de fabricantes. O desenvolvimento faz-se por capitulo onde em cada capitulo existe a conformidade o programa que representa um excerto do que foi implementado. O objetivo final é disponibilizar uma ferramenta prática, validada e tecnicamente conforme, que permita reduzir erros de dimensionamento e facilitar a elaboração de projetos fotovoltaicos seguros, eficientes e em conformidade com a regulamentação vigente.
This work proposes the development of a computational tool designed for the sizing and verification of electrical protection parameters in photovoltaic systems, ensuring compliance with IEC 60364-7-712, EN 50549-1 and -2, and Decree-Law No. 15/2022. The growing integration of solar energy systems into the Portuguese electrical grid has introduced new technical and regulatory challenges, particularly regarding the coordination of protection devices, installation safety, and the compatibility between regulatory requirements and commercially available equipment. Given the variability of solar energy, it is essential to guarantee voltage and frequency stability in the grid, while also preventing overvoltage, overcurrent, insulation faults, and fire risks. National and European legislation impose specific requirements for each installation type — whether for self-consumption or grid injection — including the mandatory use of residual current, homopolar, and surge protection devices, depending on the installed capacity and system configuration. To address these requirements, this research develops a Python-based tool with a graphical interface, capable of automatically sizing direct current (C) and alternating current (AC) protections, verifying normative compliance with protections against electric shock, transient overvoltages, and lightning, and validating voltage and frequency setpoints according to EN50549-1 and -2. The program also performs voltage drop calculations, short-circuit current estimations, residual current device (RCD) selection, earthing system verification (TT, TN, IT), and risk analysis in accordance with the Portuguese Electrical Technical Regulation (RTIEBT), providing designers with a technically robust and regulatory-compliant support tool. The structure of the work encompasses the analysis of applicable technical standards and their implementation within the software, as well as the characterization of photovoltaic system components (modules, inverters, and cabling), the definition of design scenarios, and the validation of results through comparison with reference software such as PVsyst and PV*SOL, as well as manufacturer data. The ultimate goal is to deliver a practical, validated, and technically compliant tool that minimizes design errors and facilitates the development of safe, efficient, and regulationcompliant photovoltaic projects.
This work proposes the development of a computational tool designed for the sizing and verification of electrical protection parameters in photovoltaic systems, ensuring compliance with IEC 60364-7-712, EN 50549-1 and -2, and Decree-Law No. 15/2022. The growing integration of solar energy systems into the Portuguese electrical grid has introduced new technical and regulatory challenges, particularly regarding the coordination of protection devices, installation safety, and the compatibility between regulatory requirements and commercially available equipment. Given the variability of solar energy, it is essential to guarantee voltage and frequency stability in the grid, while also preventing overvoltage, overcurrent, insulation faults, and fire risks. National and European legislation impose specific requirements for each installation type — whether for self-consumption or grid injection — including the mandatory use of residual current, homopolar, and surge protection devices, depending on the installed capacity and system configuration. To address these requirements, this research develops a Python-based tool with a graphical interface, capable of automatically sizing direct current (C) and alternating current (AC) protections, verifying normative compliance with protections against electric shock, transient overvoltages, and lightning, and validating voltage and frequency setpoints according to EN50549-1 and -2. The program also performs voltage drop calculations, short-circuit current estimations, residual current device (RCD) selection, earthing system verification (TT, TN, IT), and risk analysis in accordance with the Portuguese Electrical Technical Regulation (RTIEBT), providing designers with a technically robust and regulatory-compliant support tool. The structure of the work encompasses the analysis of applicable technical standards and their implementation within the software, as well as the characterization of photovoltaic system components (modules, inverters, and cabling), the definition of design scenarios, and the validation of results through comparison with reference software such as PVsyst and PV*SOL, as well as manufacturer data. The ultimate goal is to deliver a practical, validated, and technically compliant tool that minimizes design errors and facilitates the development of safe, efficient, and regulationcompliant photovoltaic projects.
Description
Keywords
Integração na Rede Elétrica Fotovoltaico Homopolar Centrais Solares Eficiência e Segurança Elétrica Proteção de Interligação Programa Grid integration Photovoltaics Residual protection Solar power plants Electrical efficiency and safety Interconnection protection Program
Pedagogical Context
Citation
Publisher
CC License
Without CC licence
