Publication
Evolutionary Algorithms applied to the Intraday Energy Resource Scheduling in the Context of Multiple Aggregators
dc.contributor.author | Almeida, José | |
dc.contributor.author | Soares, João | |
dc.contributor.author | Lezama, Fernando | |
dc.contributor.author | Canizes, Bruno | |
dc.contributor.author | Vale, Zita | |
dc.date.accessioned | 2023-03-14T10:35:42Z | |
dc.date.available | 2023-03-14T10:35:42Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The growing number of electric vehicles (EVs) on the road and renewable energy production to meet carbon reduction targets has posed numerous electrical grid problems. The increasing use of distributed energy resources (DER) in the grid poses severe operational issues, such as grid congestion and overloading. Active management of distribution networks using the smart grid (SG) technologies and artificial intelligence (AI) techniques by multiple entities. In this case, aggregators can support the grid's operation, providing a better product for the end-user. This study proposes an effective intraday energy resource management starting with a day-ahead time frame, considering the uncertainty associated with high DER penetration. The optimization is achieved considering five different metaheuristics (DE, HyDE-DF, DEEDA, CUMDANCauchy++, and HC2RCEDUMDA). Results show that the proposed model is effective for the multiple aggregators with variations from the day-ahead around the 6 % mark, except for the final aggregator. A Wilcoxon test is also applied to compare the performance of the CUMDANCauchy++ algorithm with the remaining. CUMDANCauchy++ shows competitive results beating all algorithms in all aggregators except for DEEDA, which presents similar results. | pt_PT |
dc.description.sponsorship | This research has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationalization (COMPETE 2020), under Project POCI- 01-0145-FEDER-028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/28983/2017(CENERGETIC),CEECIND/02814/2017, and UIDB/000760/2020. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1109/SSCI50451.2021.9660005 | pt_PT |
dc.identifier.issn | 978-1-7281-9048-8 | |
dc.identifier.uri | http://hdl.handle.net/10400.22/22471 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.relation | POCI-01-0145-FEDER-028983 | pt_PT |
dc.relation | Not Available | |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9660005 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
dc.subject | Aggregator | pt_PT |
dc.subject | Energy resource management | pt_PT |
dc.subject | Local electricity markets | pt_PT |
dc.subject | Metaheuristics | pt_PT |
dc.subject | Optimization | pt_PT |
dc.title | Evolutionary Algorithms applied to the Intraday Energy Resource Scheduling in the Context of Multiple Aggregators | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Not Available | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28983%2F2017/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F02814%2F2017%2FCP1417%2FCT0002/PT | |
oaire.citation.conferencePlace | Orlando, FL, USA | pt_PT |
oaire.citation.endPage | 08 | pt_PT |
oaire.citation.startPage | 01 | pt_PT |
oaire.citation.title | 2021 IEEE Symposium Series on Computational Intelligence (SSCI) | pt_PT |
oaire.fundingStream | 9471 - RIDTI | |
oaire.fundingStream | CEEC IND 2017 | |
person.familyName | Almeida | |
person.familyName | Soares | |
person.familyName | Lezama | |
person.familyName | Canizes | |
person.familyName | Vale | |
person.givenName | José | |
person.givenName | João | |
person.givenName | Fernando | |
person.givenName | Bruno | |
person.givenName | Zita | |
person.identifier | 1043580 | |
person.identifier | 632184 | |
person.identifier.ciencia-id | C017-775D-9F55 | |
person.identifier.ciencia-id | 1612-8EA8-D0E8 | |
person.identifier.ciencia-id | E31F-56D6-1E0F | |
person.identifier.ciencia-id | A411-F561-E922 | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.orcid | 0000-0002-9504-0501 | |
person.identifier.orcid | 0000-0002-4172-4502 | |
person.identifier.orcid | 0000-0001-8638-8373 | |
person.identifier.orcid | 0000-0002-9808-5537 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.rid | A-6945-2017 | |
person.identifier.rid | I-3492-2017 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 35436109600 | |
person.identifier.scopus-author-id | 36810077500 | |
person.identifier.scopus-author-id | 35408699300 | |
person.identifier.scopus-author-id | 7004115775 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 119ecfd0-1484-4157-911c-7632f2fc56c0 | |
relation.isAuthorOfPublication | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
relation.isAuthorOfPublication | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
relation.isAuthorOfPublication | 7ea215ea-79d5-42be-a870-a0c8b23cf556 | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication.latestForDiscovery | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isProjectOfPublication | 6615f0c1-4abc-48fc-ac0a-fce560b02403 | |
relation.isProjectOfPublication | 7f9ebad6-9f7d-4225-8694-48de17ea8b51 | |
relation.isProjectOfPublication.latestForDiscovery | 6615f0c1-4abc-48fc-ac0a-fce560b02403 |