Repository logo
 
Publication

Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs

dc.contributor.authorLi, Kai
dc.contributor.authorEmami, Yousef
dc.contributor.authorNi, Wei
dc.contributor.authorTovar, Eduardo
dc.contributor.authorHan, Zhu
dc.date.accessioned2020-10-20T08:28:39Z
dc.date.embargo2119
dc.date.issued2020
dc.description.abstractIn Unmanned Aerial Vehicle (UAV) enabled data collection, scheduling data transmissions of the ground nodes while controlling flight of the UAV, e.g., heading and velocity, is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In this letter, a new online flight resource allocation scheme based on deep deterministic policy gradients (DDPG-FRAS) is studied to jointly optimize the flight control of the UAV and data collection scheduling along the trajectory in real time, thereby asymptotically minimizing the packet loss of the ground sensor networks. Numerical results confirm that the proposed DDPG-FRAS can gradually converge, while enlarging the buffer size can reduce the packet loss by 47.9%.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/LNET.2020.3002341pt_PT
dc.identifier.issn2576-3156
dc.identifier.urihttp://hdl.handle.net/10400.22/16331
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherIEEEpt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9116954pt_PT
dc.subjectUnmanned aerial vehiclespt_PT
dc.subjectFlight controlpt_PT
dc.subjectData collectionpt_PT
dc.subjectDeep reinforcement learningpt_PT
dc.titleOnboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage3156pt_PT
oaire.citation.issue3pt_PT
oaire.citation.startPage2576pt_PT
oaire.citation.titlehttps://ieeexplore.ieee.org/document/9116954pt_PT
oaire.citation.volume2pt_PT
person.familyNameLi
person.familyNameemami
person.familyNameTovar
person.givenNameKai
person.givenNameyousef
person.givenNameEduardo
person.identifier.ciencia-idEE10-B822-16ED
person.identifier.ciencia-id6017-8881-11E8
person.identifier.orcid0000-0002-0517-2392
person.identifier.orcid0000-0002-8842-2616
person.identifier.orcid0000-0001-8979-3876
person.identifier.scopus-author-id7006312557
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication21f3fb85-19c2-4c89-afcd-3acb27cedc5e
relation.isAuthorOfPublication7ceb96e7-a727-4b9a-a25d-624554afdc87
relation.isAuthorOfPublication80b63d8a-2e6d-484e-af3c-55849d0cb65e
relation.isAuthorOfPublication.latestForDiscovery7ceb96e7-a727-4b9a-a25d-624554afdc87

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART_CISTER_Kai Li_2020.pdf
Size:
546.84 KB
Format:
Adobe Portable Document Format