Publication
Wireless radio link design to improve nearshore communication with surface nodes on tidal waters
dc.contributor.author | Gutiérrez Gaitán, Miguel | |
dc.contributor.author | d'Orey, Pedro | |
dc.contributor.author | Santos, Pedro Miguel | |
dc.contributor.author | Ribeiro, Manuel | |
dc.contributor.author | Pinto, Luís | |
dc.contributor.author | Almeida, Luís | |
dc.contributor.author | Sousa, J. Borges de | |
dc.date.accessioned | 2021-09-27T09:59:58Z | |
dc.date.available | 2021-09-27T09:59:58Z | |
dc.date.issued | 2021-09-23 | |
dc.description.abstract | Wireless radio links deployed over aquatic areas (e.g., sea, estuaries or harbors) are affected by the conductive properties of the water surface, strengthening signal reflections and increasing interference effects. Recurrent natural phenomena such as tides or waves cause shifts in the water level that, in turn, change the interference patterns and cause varying impairments to propagation over water surfaces. In this work, we aim at mitigating the detrimental impact of tides on the quality of a line-of-sight over-water link between an onshore station and a surface node, targeting mission data transfer scenarios. We consider different types of surface nodes, namely, autonomous underwater vehicles, unmanned surface vehicles and buoys, and we use WiFi technology in both 2.4 GHz and 5 GHz frequency bands. We propose two methods for link distance/height design: (i) identifying a proper Tx-Rx distance for improved link quality at each point of the tidal cycle; (ii) defining the height/distance that minimizes the path loss averaged during the whole tidal cycle.Experimental results clearly show the validity of our link quality model and the interest of method (i). Analytical results confirm method (ii) and show that it outperforms, in both frequency bands, the common practice of placing onshore antennas at the largest possible height and/or surface nodes at a short but arbitrary distance. | pt_PT |
dc.description.sponsorship | This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020) and by FCT through the European Social Fund (ESF) and the Regional Operational Programme (ROP) Norte 2020, under grant 2020.06685.BD, as well as by the European Union’s Horizon 2020 Marine robotics research infrastructure network project under grant agreement No 731103. This support is gratefully acknowledged. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.uri | http://hdl.handle.net/10400.22/18554 | |
dc.language.iso | eng | pt_PT |
dc.relation | UIDP/UIDB/04234/2020 | pt_PT |
dc.relation | Marine robotics research infrastructure network | |
dc.relation.ispartofseries | CISTER-TR-210706; | |
dc.subject | Maritime communication | pt_PT |
dc.subject | Over-water | pt_PT |
dc.subject | Path loss | pt_PT |
dc.subject | Propagation | pt_PT |
dc.subject | Tidal fading | pt_PT |
dc.subject | Tides | pt_PT |
dc.subject | Two-ray | pt_PT |
dc.subject | Wireless | pt_PT |
dc.subject | WiFi | pt_PT |
dc.title | Wireless radio link design to improve nearshore communication with surface nodes on tidal waters | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Marine robotics research infrastructure network | |
oaire.awardURI | info:eu-repo/grantAgreement/EC/H2020/731103/EU | |
oaire.citation.conferencePlace | September 20–23 | pt_PT |
oaire.citation.title | OCEANS 2021 | pt_PT |
oaire.fundingStream | H2020 | |
person.familyName | Gutiérrez Gaitán | |
person.givenName | Miguel | |
person.identifier.orcid | 0000-0002-3307-8731 | |
person.identifier.scopus-author-id | 57192172325 | |
project.funder.identifier | http://doi.org/10.13039/501100008530 | |
project.funder.name | European Commission | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 3512370f-381d-42ec-95e1-6ddd459c8169 | |
relation.isAuthorOfPublication.latestForDiscovery | 3512370f-381d-42ec-95e1-6ddd459c8169 | |
relation.isProjectOfPublication | 0c963d90-cb2f-48e6-bf56-7276f45b9bdd | |
relation.isProjectOfPublication.latestForDiscovery | 0c963d90-cb2f-48e6-bf56-7276f45b9bdd |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- COM_CISTER_TR-210706_2021.pdf
- Size:
- 1.5 MB
- Format:
- Adobe Portable Document Format