Publication
Modeling of Consumer Preferences and Constraints for the Optimal Schedule of Consumption Shifting
dc.contributor.author | Faria, Pedro | |
dc.contributor.author | Spinola, Joao | |
dc.contributor.author | Vale, Zita | |
dc.date.accessioned | 2021-09-22T15:08:10Z | |
dc.date.available | 2021-09-22T15:08:10Z | |
dc.date.issued | 2019 | |
dc.description.abstract | The actual context for smart grid implementation implies the development of tools to support the diverse player's decisions. The present paper addresses a multi-period consumer's management methodology for the scheduling of demand flexibility initiatives and on-site generation. The objective is to minimize the energy costs for the consumer, taking into account his resources. The paper also considers the use of dynamic pricing with the intent of studying its effect on load shifting schedule. The results obtained show how the consumers can use this methodology to achieve new efficiency levels regarding their energy use, and therefore costs. | pt_PT |
dc.description.sponsorship | The present work was done and funded in the scope of the following projects: COLORS Project PTDC/EEI-EEE/28967/2017 and UID/EEA/00760/2019 funded by FEDER Funds through COMPETE program and by National Funds through FCT. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1109/PTC.2019.8810732 | pt_PT |
dc.identifier.isbn | 978-1-5386-4722-6 | |
dc.identifier.uri | http://hdl.handle.net/10400.22/18486 | |
dc.language.iso | eng | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation | COLORS - CONTEXTUAL LOAD FLEXIBILITY REMUNERATION STRATEGIES | |
dc.relation | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/8810732 | pt_PT |
dc.subject | Demand response | pt_PT |
dc.subject | Distributed generation | pt_PT |
dc.subject | Load shifting | pt_PT |
dc.subject | Resource scheduling | pt_PT |
dc.title | Modeling of Consumer Preferences and Constraints for the Optimal Schedule of Consumption Shifting | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | COLORS - CONTEXTUAL LOAD FLEXIBILITY REMUNERATION STRATEGIES | |
oaire.awardTitle | Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28967%2F2017/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F00760%2F2019/PT | |
oaire.citation.conferencePlace | Milan, Italy | pt_PT |
oaire.citation.endPage | 6 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | 2019 IEEE Milan PowerTech | pt_PT |
oaire.fundingStream | 9471 - RIDTI | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Faria | |
person.familyName | Vale | |
person.givenName | Pedro | |
person.givenName | Zita | |
person.identifier | 632184 | |
person.identifier.ciencia-id | B212-2309-F9C3 | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.orcid | 0000-0002-5982-8342 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 7004115775 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6 | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication.latestForDiscovery | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isProjectOfPublication | b3dd8bd2-b256-4686-a5d8-31fc725f0204 | |
relation.isProjectOfPublication | 9b771c00-8c2c-4226-b06d-e33ef11f0d32 | |
relation.isProjectOfPublication.latestForDiscovery | 9b771c00-8c2c-4226-b06d-e33ef11f0d32 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- COM_GECAD_Powertech2019_Faria_2019.pdf
- Size:
- 319.64 KB
- Format:
- Adobe Portable Document Format