Publication
Metalearner based on Dynamic Neural Network for Strategic Bidding in electricity Markets
dc.contributor.author | Pinto, Tiago | |
dc.contributor.author | Sousa, Tiago | |
dc.contributor.author | Barreira, Elisa | |
dc.contributor.author | Praça, Isabel | |
dc.contributor.author | Vale, Zita | |
dc.date.accessioned | 2015-05-06T08:49:51Z | |
dc.date.available | 2015-05-06T08:49:51Z | |
dc.date.issued | 2013-08 | |
dc.description.abstract | The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market. | por |
dc.identifier.doi | 10.1109/DEXA.2013.49 | |
dc.identifier.uri | http://hdl.handle.net/10400.22/5937 | |
dc.language.iso | eng | por |
dc.publisher | IEEE | por |
dc.relation.ispartofseries | DEXA;2013 | |
dc.relation.publisherversion | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6621368&queryText%3DMetalearner+based+on+Dynamic+Neural+Network+for+Strategic+Bidding+in+electricity+Markets | por |
dc.subject | Adaptive Learning | por |
dc.subject | Artificial Neural Network | por |
dc.subject | Electricity Markets | por |
dc.subject | Multi-Agent Simulation | por |
dc.subject | Metalearning | por |
dc.title | Metalearner based on Dynamic Neural Network for Strategic Bidding in electricity Markets | por |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | Praga, República Checa | por |
oaire.citation.title | Second International Workshop on Intelligent Agent Technology, Power Systems and Energy Markets (IATEM 2013) at the 24th International Conference on Database and Expert Systems Applications (DEXA 2013) | por |
person.familyName | Pinto | |
person.familyName | Praça | |
person.familyName | Vale | |
person.givenName | Tiago | |
person.givenName | Isabel | |
person.givenName | Zita | |
person.identifier | R-000-T7J | |
person.identifier | 299522 | |
person.identifier | 632184 | |
person.identifier.ciencia-id | 2414-9B03-C4BB | |
person.identifier.ciencia-id | C710-4218-1BFF | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.orcid | 0000-0001-8248-080X | |
person.identifier.orcid | 0000-0002-2519-9859 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.rid | T-2245-2018 | |
person.identifier.rid | K-8430-2014 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 35219107600 | |
person.identifier.scopus-author-id | 22734900800 | |
person.identifier.scopus-author-id | 7004115775 | |
rcaap.rights | openAccess | por |
rcaap.type | conferenceObject | por |
relation.isAuthorOfPublication | 8d58ddc0-1023-47c0-a005-129d412ce98d | |
relation.isAuthorOfPublication | ee4ecacd-c6c6-41e8-bca1-21a60ff05f50 | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication.latestForDiscovery | ee4ecacd-c6c6-41e8-bca1-21a60ff05f50 |