Publication
Learning Bidding Strategies in Local Electricity Markets using a Nature-Inspired Algorithm
dc.contributor.author | Lezama, Fernando | |
dc.contributor.author | Soares, João | |
dc.contributor.author | Faia, Ricardo | |
dc.contributor.author | Faria, Pedro | |
dc.contributor.author | Vale, Zita | |
dc.date.accessioned | 2021-09-22T10:57:52Z | |
dc.date.available | 2021-09-22T10:57:52Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Local electricity markets (LEM) are a promising idea to foster the efficiency and use of renewable energy at the distribution level. However, how these local markets will be integrated into existing market structures, and to make the most profit from them, is still unclear. In this work, we propose a LEM framework based on bi-level optimization. In the upper level, end-users aim at maximizing profits, while the lower level represents the clearing market process. Moreover, a cascade integration to the wholesale market through an aggregator that acts after the LEM has been cleared is considered. Learning strategies using only available information can be a powerful tool to take the most advantage of LEM. To this end, we advocate the use of ant colony optimization (ACO), a nature-inspired technique, similar to that employed in machine learning. By using ACO, consumers, producers and prosumers, can learn the best strategies to maximize their profits without sharing private information and based solely on their experience. | pt_PT |
dc.description.sponsorship | his work has received funding from the European Union's Horizon 2020 research and innovation programme under project DOMINOES (grant agreement No 771066), from FEDER Funds through COMPETE program and from National Funds through (FCT) under the projects UIDB/00760/2020, MASSociety (PTDC/EEI-EEE/28954/2017), and grants CEECIND/02887/2017, CEECIND/02814/2017, SFRH/BD/133086/2017. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1109/EEM49802.2020.9221939 | pt_PT |
dc.identifier.isbn | 978-1-7281-6919-4 | |
dc.identifier.uri | http://hdl.handle.net/10400.22/18470 | |
dc.language.iso | eng | pt_PT |
dc.publisher | IEEE | pt_PT |
dc.relation | CEECIND/02887/2017 | pt_PT |
dc.relation | Smart Distribution Grid: a Market Driven Approach for the Next Generation of Advanced Operation Models and Services | |
dc.relation | Multi-Agent Systems SemantiC Interoperability for simulation and dEcision supporT in complex energY systems | |
dc.relation | Apoio à decisão para participação em mercados de energia elétrica | |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9221939 | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
dc.subject | Ant Colony | pt_PT |
dc.subject | Optimization | pt_PT |
dc.subject | Learning Strategy | pt_PT |
dc.subject | Local energy market | pt_PT |
dc.subject | Renewable energy | pt_PT |
dc.title | Learning Bidding Strategies in Local Electricity Markets using a Nature-Inspired Algorithm | pt_PT |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Smart Distribution Grid: a Market Driven Approach for the Next Generation of Advanced Operation Models and Services | |
oaire.awardTitle | Multi-Agent Systems SemantiC Interoperability for simulation and dEcision supporT in complex energY systems | |
oaire.awardTitle | Apoio à decisão para participação em mercados de energia elétrica | |
oaire.awardURI | info:eu-repo/grantAgreement/EC/H2020/771066/EU | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28954%2F2017/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F133086%2F2017/PT | |
oaire.citation.conferencePlace | Stockholm, Sweden | pt_PT |
oaire.citation.endPage | 6 | pt_PT |
oaire.citation.startPage | 1 | pt_PT |
oaire.citation.title | 17th International Conference on The European Energy Market (EEM20) | pt_PT |
oaire.fundingStream | H2020 | |
oaire.fundingStream | 9471 - RIDTI | |
person.familyName | Lezama | |
person.familyName | Soares | |
person.familyName | Faia | |
person.familyName | Faria | |
person.familyName | Vale | |
person.givenName | Fernando | |
person.givenName | João | |
person.givenName | Ricardo Francisco Marcos | |
person.givenName | Pedro | |
person.givenName | Zita | |
person.identifier | 1043580 | |
person.identifier | 78FtZwIAAAAJ | |
person.identifier | 632184 | |
person.identifier.ciencia-id | E31F-56D6-1E0F | |
person.identifier.ciencia-id | 1612-8EA8-D0E8 | |
person.identifier.ciencia-id | 9B12-19F6-D6C7 | |
person.identifier.ciencia-id | B212-2309-F9C3 | |
person.identifier.ciencia-id | 721B-B0EB-7141 | |
person.identifier.orcid | 0000-0001-8638-8373 | |
person.identifier.orcid | 0000-0002-4172-4502 | |
person.identifier.orcid | 0000-0002-1053-7720 | |
person.identifier.orcid | 0000-0002-5982-8342 | |
person.identifier.orcid | 0000-0002-4560-9544 | |
person.identifier.rid | A-6945-2017 | |
person.identifier.rid | A-5824-2012 | |
person.identifier.scopus-author-id | 36810077500 | |
person.identifier.scopus-author-id | 35436109600 | |
person.identifier.scopus-author-id | 7004115775 | |
project.funder.identifier | http://doi.org/10.13039/501100008530 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | European Commission | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | conferenceObject | pt_PT |
relation.isAuthorOfPublication | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
relation.isAuthorOfPublication | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
relation.isAuthorOfPublication | 5866fe1d-e5f9-42fb-a7c8-e35a23d6a6ce | |
relation.isAuthorOfPublication | 35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6 | |
relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
relation.isAuthorOfPublication.latestForDiscovery | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
relation.isProjectOfPublication | 166b0a9d-d964-4026-9532-601559959486 | |
relation.isProjectOfPublication | a620525e-5a41-410f-bd99-c7e9546e9037 | |
relation.isProjectOfPublication | 5174c937-e0b3-4cec-a768-c1fe1d75165e | |
relation.isProjectOfPublication.latestForDiscovery | a620525e-5a41-410f-bd99-c7e9546e9037 |
Files
Original bundle
1 - 1 of 1