Logo do repositório
 
Publicação

Atomic Dispersion of Scandium in Electrochemically Reduced Copper Oxide Nanosheets for Efficient Electrocatalytic CO2 Reduction to C2+ Products

datacite.subject.fosEngenharia e Tecnologia
datacite.subject.sdg09:Indústria, Inovação e Infraestruturas
dc.contributor.authorZhao, Yang
dc.contributor.authorZeng, Binwen
dc.contributor.authorHuang, Haoliang
dc.contributor.authorYang, Huanhuan
dc.contributor.authorYu, Zhipeng
dc.contributor.authorSong, Chao
dc.contributor.authorWang, Jingwei
dc.contributor.authorXu, Kaiyang
dc.contributor.authorXiang, Xinyi
dc.contributor.authorWang, Wei
dc.contributor.authorLin, Fei
dc.contributor.authorMeng, Sheng
dc.contributor.authorMeng, Lijian
dc.contributor.authorCui, Zhiming
dc.contributor.authorLiu, Lifeng
dc.date.accessioned2025-10-10T15:37:31Z
dc.date.available2025-10-10T15:37:31Z
dc.date.issued2025
dc.description.abstractConverting CO2 into value-added chemicals and fuels through electrochemical CO2 reduction reaction (CO2RR) has been acknowledged as a disruptive technology for chemical industry and an important means to realizing carbon neutrality. However, it remains challenging to achieve high selectivity for C2+ products at a large current density with a low overpotential. Herein, we report a scandium (Sc) single-atom-doped CuO nanosheet (Sc1CuO NS) electrocatalyst for efficient and durable CO2-to-C2+ conversion. The optimal Sc1CuO NS catalyst achieves a maximal C2+ Faradaic efficiency of 73 ± 1.8 % at 475.2 mA cm−2 under an ultralow potential of −0.6 V versus the reversible hydrogen electrode (RHE) and maintains stable CO2-to-C2+ conversion at ∼206 mA cm−2 with a > 60 % Faradaic efficiency for 47 h without degradation. In-situ spectroscopy measurements combined with density functional theory (DFT) calculations reveal that the electron transfer from Sc to Cu enhances the activation of CO2 to *CO. Moreover, the in-situ electrochemical reduction of CuO generates abundant undercoordinated Cu0 sites, featuring tensile-strained Sc-(O)-Cu motifs, which serve as active centers that reduce the reaction barrier for Csingle bondC coupling. This work highlights the importance of rare-earth doping combined with in-situ electrochemical surface reconstruction of CuO as an effective catalyst design strategy to boost CO2-to-C2+ conversion performance.eng
dc.identifier.citationYang Zhao, Binwen Zeng, Haoliang Huang, Huanhuan Yang, Zhipeng Yu, Chao Song, Jingwei Wang, Kaiyang Xu, Xinyi Xiang, Wei Wang, Fei Lin, Sheng Meng, Lijian Meng, Zhiming Cui, Lifeng Liu, Atomic dispersion of scandium in electrochemically reduced copper oxide nanosheets for efficient electrocatalytic CO2 reduction to C2+ products, Chemical Engineering Journal, Volume 524, 2025, 169132, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2025.169132.
dc.identifier.doihttps://doi.org/10.1016/j.cej.2025.169132
dc.identifier.issn1385-8947
dc.identifier.urihttp://hdl.handle.net/10400.22/30592
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectElectrochemical CO2 reduction
dc.subjectRare earth doping
dc.subjectCuO nanosheet
dc.subjectStrain engineering
dc.subjectSurface reconstruction
dc.titleAtomic Dispersion of Scandium in Electrochemically Reduced Copper Oxide Nanosheets for Efficient Electrocatalytic CO2 Reduction to C2+ Productseng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue524
oaire.citation.titleChemical Engineering Journal
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
Paper 115-2025-Chemical Engineering Journal.pdf
Tamanho:
8.53 MB
Formato:
Adobe Portable Document Format