Repository logo
 
Publication

KPI for Managing and Controlling a Demand Response System: A Testing Framework for End Users

dc.contributor.authorSão José, Débora de
dc.contributor.authorFaria, Pedro
dc.contributor.authorSilva, Cátia
dc.contributor.authorVale, Zita
dc.date.accessioned2021-09-22T10:29:30Z
dc.date.available2021-09-22T10:29:30Z
dc.date.issued2020
dc.description.abstractConsidering the increase of distributed generation and the complexity in power electricity management, demand response programs can be a way to reduce stress and strengthen power grids. However, as demand response involves end users changing their consumption patterns and adapting to on time different scenarios, some decision-making support tools are necessary. The present paper proposes and tests an energy management and controlling framework to assist electricity end users in decision making in a demand response scenario while using a set of key performance indicators. The tool was tested using a group of 20 end users and showed a consistent result throughout all the elements in the consumers group, total consumption presented a small decrease due to reduce of comfort, especially during weekdays.pt_PT
dc.description.sponsorshipThis work has received funding from FEDER Funds through COMPETE program and from National Funds through (FCT) under the projects UIDB/00760/2020 and COLORS PTDC/EEI-EEE/28967/2017, and grants CEECIND/02887/2017 and SFRH/BD/144200/2019pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/EEM49802.2020.9221965pt_PT
dc.identifier.isbn978-1-7281-6919-4
dc.identifier.urihttp://hdl.handle.net/10400.22/18465
dc.language.isoengpt_PT
dc.publisherIEEEpt_PT
dc.relationCEECIND/02887/2017pt_PT
dc.relationCOLORS - CONTEXTUAL LOAD FLEXIBILITY REMUNERATION STRATEGIES
dc.relationEffective DR gathering and deployment for intensive renewable integration using aggregation and machine learning
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9221965pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectDemand responsept_PT
dc.subjectKey Performance Indicatorspt_PT
dc.subjectKPIpt_PT
dc.subjectMonitoringpt_PT
dc.subjectSystem Managementpt_PT
dc.titleKPI for Managing and Controlling a Demand Response System: A Testing Framework for End Userspt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleCOLORS - CONTEXTUAL LOAD FLEXIBILITY REMUNERATION STRATEGIES
oaire.awardTitleEffective DR gathering and deployment for intensive renewable integration using aggregation and machine learning
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FEEI-EEE%2F28967%2F2017/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F144200%2F2019/PT
oaire.citation.conferencePlaceStockholm, Swedenpt_PT
oaire.citation.endPage5pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title17th International Conference on The European Energy Market (EEM20)pt_PT
oaire.fundingStream9471 - RIDTI
person.familyNamede São José
person.familyNameFaria
person.familyNameSilva
person.familyNameVale
person.givenNameDébora Regina
person.givenNamePedro
person.givenNameCátia
person.givenNameZita
person.identifierAAX-5535-2020
person.identifier632184
person.identifier.ciencia-id6119-1B39-0489
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id5318-DCFD-218D
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0003-0176-8217
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0001-8306-4568
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id57201946662
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication367917a6-c84f-4754-8bd2-1eee7b91ed90
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublication5eebf2bb-32f6-4593-a536-6db611d531e8
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery5eebf2bb-32f6-4593-a536-6db611d531e8
relation.isProjectOfPublicationb3dd8bd2-b256-4686-a5d8-31fc725f0204
relation.isProjectOfPublication251e8359-504b-430d-b43d-84097b01ccfe
relation.isProjectOfPublication.latestForDiscoveryb3dd8bd2-b256-4686-a5d8-31fc725f0204

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_EEM_Deb_2020.pdf
Size:
2.53 MB
Format:
Adobe Portable Document Format