Publication
Complex Large-Scale Energy Resource Management Optimization Considering Demand Flexibility
| dc.contributor.author | Canizes, Bruno | |
| dc.contributor.author | Soares, João | |
| dc.contributor.author | Lezama, Fernando | |
| dc.contributor.author | Vale, Zita | |
| dc.date.accessioned | 2021-03-04T18:18:51Z | |
| dc.date.available | 2021-03-04T18:18:51Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | As renewable energy sources penetration is increasing in the power distribution network, an energy aggregator can provide a highly flexible generation and demand as required by the smart grid paradigm. However, this energy aggregator entity needs adequate decision support tools to overcome the complex challenges and deal with a number of energy resources. So, the energy resource management is crucial for the aggregator, to increase the profits, reduce the operation costs, reduce the carbon footprint and also to improve the system stability. Thus, this paper proposes a model for a large-scale energy resource scheduling problem of aggregators in a smart grid. Also, it is compared the performance of five evolutionary algorithms to solve this kind of problem. A realistic case study is performed using a real distribution network in Zaragoza, Spain. The results show that load flexibility can contribute to the profitability improvement of the aggregators' entities. | pt_PT |
| dc.description.sponsorship | This work has received funding from Portugal 2020 under SPEAR project (NORTE-01-0247-FEDER-040224) and from National Funds through the FCT Portuguese Foundation for Science and Technology, under Project UIDB/00760/2020. Joao Soares is supported by FCT CEECIND/02814/2017 grant | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.doi | 10.1109/CEC48606.2020.9185617 | pt_PT |
| dc.identifier.isbn | 978-1-7281-6929-3 | |
| dc.identifier.uri | http://hdl.handle.net/10400.22/17287 | |
| dc.language.iso | eng | pt_PT |
| dc.publisher | IEEE | pt_PT |
| dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9185617 | pt_PT |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
| dc.subject | Demand response | pt_PT |
| dc.subject | Differential evolution | pt_PT |
| dc.subject | Distribution networks | pt_PT |
| dc.subject | Electric vehicle | pt_PT |
| dc.subject | Evolutionary computation | pt_PT |
| dc.subject | Load flexibility | pt_PT |
| dc.subject | Smart grid | pt_PT |
| dc.title | Complex Large-Scale Energy Resource Management Optimization Considering Demand Flexibility | pt_PT |
| dc.type | conference object | |
| dspace.entity.type | Publication | |
| oaire.citation.conferencePlace | Glasgow, UK | pt_PT |
| oaire.citation.endPage | 8 | pt_PT |
| oaire.citation.startPage | 1 | pt_PT |
| oaire.citation.title | 2020 IEEE Congress on Evolutionary Computation (CEC) | pt_PT |
| person.familyName | Canizes | |
| person.familyName | Soares | |
| person.familyName | Lezama | |
| person.familyName | Vale | |
| person.givenName | Bruno | |
| person.givenName | João | |
| person.givenName | Fernando | |
| person.givenName | Zita | |
| person.identifier | 1043580 | |
| person.identifier | 632184 | |
| person.identifier.ciencia-id | A411-F561-E922 | |
| person.identifier.ciencia-id | 1612-8EA8-D0E8 | |
| person.identifier.ciencia-id | E31F-56D6-1E0F | |
| person.identifier.ciencia-id | 721B-B0EB-7141 | |
| person.identifier.orcid | 0000-0002-9808-5537 | |
| person.identifier.orcid | 0000-0002-4172-4502 | |
| person.identifier.orcid | 0000-0001-8638-8373 | |
| person.identifier.orcid | 0000-0002-4560-9544 | |
| person.identifier.rid | I-3492-2017 | |
| person.identifier.rid | A-6945-2017 | |
| person.identifier.rid | A-5824-2012 | |
| person.identifier.scopus-author-id | 35408699300 | |
| person.identifier.scopus-author-id | 35436109600 | |
| person.identifier.scopus-author-id | 36810077500 | |
| person.identifier.scopus-author-id | 7004115775 | |
| rcaap.rights | openAccess | pt_PT |
| rcaap.type | conferenceObject | pt_PT |
| relation.isAuthorOfPublication | 7ea215ea-79d5-42be-a870-a0c8b23cf556 | |
| relation.isAuthorOfPublication | 9ece308b-6d79-4cec-af91-f2278dcc47eb | |
| relation.isAuthorOfPublication | 6a55317b-92c2-404f-8542-c7a73061cc9b | |
| relation.isAuthorOfPublication | ff1df02d-0c0f-4db1-bf7d-78863a99420b | |
| relation.isAuthorOfPublication.latestForDiscovery | ff1df02d-0c0f-4db1-bf7d-78863a99420b |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- COM_GECAD_Canizes_2020.pdf
- Size:
- 453.96 KB
- Format:
- Adobe Portable Document Format
