Repository logo
 
Publication

Particle swarm optimization applied to integrated demand response resources scheduling

dc.contributor.authorFaria, Pedro
dc.contributor.authorVale, Zita
dc.contributor.authorSoares, João
dc.contributor.authorFerreira, Judite
dc.date.accessioned2013-04-19T10:29:43Z
dc.date.available2013-04-19T10:29:43Z
dc.date.issued2011
dc.date.updated2013-04-12T15:58:28Z
dc.description.abstractThe concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.por
dc.identifierDOI 10.1109/CIASG.2011.5953326
dc.identifier.isbn978-1-4244-9893-2
dc.identifier.urihttp://hdl.handle.net/10400.22/1420
dc.language.isoengpor
dc.publisherIEEEpor
dc.relation.publisherversionhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5953326por
dc.subjectDemand responsepor
dc.subjectParticle swarm optimizationpor
dc.subjectSimulationpor
dc.subjectSmart gridpor
dc.subjectVirtual power playerpor
dc.titleParticle swarm optimization applied to integrated demand response resources schedulingpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceParis, French Guiana, 2011por
oaire.citation.titleIEEE Symposium on Computational Intelligence Applications In Smart Grid (CIASG)por
person.familyNameFaria
person.familyNameVale
person.familyNameSoares
person.givenNamePedro
person.givenNameZita
person.givenNameJoão
person.identifier632184
person.identifier1043580
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0002-4172-4502
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id7004115775
person.identifier.scopus-author-id35436109600
rcaap.rightsclosedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublication.latestForDiscovery35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
COM_PedroFaria_2011_GECAD.pdf
Size:
811.72 KB
Format:
Adobe Portable Document Format