Name: | Description: | Size: | Format: | |
---|---|---|---|---|
4.09 MB | Adobe PDF |
Authors
Abstract(s)
A transição energética tem vindo a atribuir um papel cada vez mais interventivo e dinâmico
aos consumidores da rede elétrica, tornando-os agentes ativos na gestão da procura. Porem,
esta evolução traz consigo novos desafios no planeamento e operações das redes, exigindo
modelos mais precisos e capazes de refletir o comportamento real dos consumos em
diferentes condições de funcionamento. Neste contexto foi implementado um protótipo
laboratorial com o objetivo de estudar e caracterizar a resposta das cargas elétricas face às
variações de parâmetros da rede, nomeadamente a alterações na frequência e na tensão. A
abordagem adotada baseou-se na simulação em tempo real, com recurso à metodoliga Power
Hardware-In-The-Loop (PHIL), permitindo uma interação direta entre o sistema simulado e os
componentes físicos do laboratório.
Durante a fase experimental, o simulador em tempo real gerou uma rede elétrica virtual,
que alimentou um amplificador permitindo o controlo de uma carga indutiva/resistiva,
criando assim um ambiente de teste representativo das condições reais de operação, com a
reprodução de diversos perfis de consumo associados ao utilizador final. Com base nos dados
recolhidos, foi possivel avaliar o desempenho dos modelos desenvolvidos, detetar erros
relativos quando aplicado às diferentes cargas e analisar o consumo constante sob variações
de tensão, observando a sensibilidade da carga perante instabilidades na rede elétrica.
The energy transition has increasingly assigned an interventionist and dynamic role to consumers of the electrical grid, making them active agents in demand management. However, this evolution brings with it new challenges in the planning and operations of the networks, requiring more accurate models capable of reflecting the real behavior of consumption in different operating conditions. In this context, a laboratory prototype was implemented with the aim of studying and characterizing the response of electrical loads to variations in network parameters, namely changes in frequency and voltage. The approach adopted was based on real-time simulation, using the Power Hardware-In-The-Loop (PHIL) methodology, allowing direct interaction between the simulated system and the physical components of the laboratory. During the experimental phase, the real-time simulator generated a virtual electrical grid, which fed an amplifier allowing the control of an inductive/resistive load, thus creating a test environment representative of real operating conditions, with the reproduction of various consumption profiles associated with the end user. Based on the data collected, it was possible to evaluate the performance of the developed models, detect relative errors when applied to different loads and analyze constant consumpt ion under voltage variations, observing the sensitivity of the load to instabilities in the electrical grid.
The energy transition has increasingly assigned an interventionist and dynamic role to consumers of the electrical grid, making them active agents in demand management. However, this evolution brings with it new challenges in the planning and operations of the networks, requiring more accurate models capable of reflecting the real behavior of consumption in different operating conditions. In this context, a laboratory prototype was implemented with the aim of studying and characterizing the response of electrical loads to variations in network parameters, namely changes in frequency and voltage. The approach adopted was based on real-time simulation, using the Power Hardware-In-The-Loop (PHIL) methodology, allowing direct interaction between the simulated system and the physical components of the laboratory. During the experimental phase, the real-time simulator generated a virtual electrical grid, which fed an amplifier allowing the control of an inductive/resistive load, thus creating a test environment representative of real operating conditions, with the reproduction of various consumption profiles associated with the end user. Based on the data collected, it was possible to evaluate the performance of the developed models, detect relative errors when applied to different loads and analyze constant consumpt ion under voltage variations, observing the sensitivity of the load to instabilities in the electrical grid.
Description
Keywords
Load modeling Power hardware-in-the-loop Real-time simulation Modelação da carga Simulação em tempo real
Pedagogical Context
Citation
Publisher
CC License
Without CC licence