Repository logo
 
Publication

Energy Consumption Forecasting Using Ensemble Learning Algorithms

dc.contributor.authorSilva, José
dc.contributor.authorPraça, Isabel
dc.contributor.authorPinto, Tiago
dc.contributor.authorVale, Zita
dc.date.accessioned2021-01-29T15:05:09Z
dc.date.available2021-01-29T15:05:09Z
dc.date.issued2020
dc.descriptionDCAI 2019: Distributed Computing and Artificial Intelligence, 16th International Conference, Special Sessions
dc.description.abstractThe increase of renewable energy sources of intermittent nature has brought several new challenges for power and energy systems. In order to deal with the variability from the generation side, there is the need to balance it by managing consumption appropriately. Forecasting energy consumption becomes, therefore, more relevant than ever. This paper presents and compares three different ensemble learning methods, namely random forests, gradient boosted regression trees and Adaboost. Hour-ahead electricity load forecasts are presented for the building N of GECAD at ISEP campus. The performance of the forecasting models is assessed, and results show that the Adaboost model is superior to the other considered models for the one-hour ahead forecasts. The results of this study compared to previous works indicates that ensemble learning methods are a viable choice for short-term load forecast.pt_PT
dc.description.sponsorshipThis work has received funding from National Funds through FCT (Fundaçao da Ciencia e Tecnologia) under the project SPET – 29165, call SAICT 2017.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/978-3-030-23946-6_1pt_PT
dc.identifier.isbn978-3-030-23946-6
dc.identifier.urihttp://hdl.handle.net/10400.22/16797
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007%2F978-3-030-23946-6_1pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectElectricity consumptionpt_PT
dc.subjectShort-term load forecastpt_PT
dc.subjectEnsemble learning methodspt_PT
dc.subjectForecastingpt_PT
dc.titleEnergy Consumption Forecasting Using Ensemble Learning Algorithmspt_PT
dc.typebook part
dspace.entity.typePublication
oaire.citation.endPage13pt_PT
oaire.citation.startPage5pt_PT
oaire.citation.titleAdvances in Intelligent Systems and Computingpt_PT
oaire.citation.volume1004pt_PT
person.familyNamePraça
person.familyNamePinto
person.familyNameVale
person.givenNameIsabel
person.givenNameTiago
person.givenNameZita
person.identifier299522
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0002-2519-9859
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridK-8430-2014
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id22734900800
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
rcaap.rightsopenAccesspt_PT
rcaap.typebookPartpt_PT
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryee4ecacd-c6c6-41e8-bca1-21a60ff05f50

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CAPL_GECAD_DCAI19_Silva__AUTHOR-VERSION_2020.pdf
Size:
545.63 KB
Format:
Adobe Portable Document Format