Repository logo
 
Publication

Real-Time Approach for Demand Response Tariffs Definition Using Decision Trees

dc.contributor.authorSilva, Cátia
dc.contributor.authorFaria, Pedro
dc.contributor.authorVale, Zita
dc.date.accessioned2021-09-22T14:18:45Z
dc.date.available2021-09-22T14:18:45Z
dc.date.issued2019
dc.description.abstractGiving the small resources more information about the transactions in the market will have a great influence on the balance and increase the uncertainty. Business models that are prepared to deal with small consumers and/or with small Distributed Generation units need to emerge to deal with this problem. The authors present a methodology able to minimize the operation costs for the Aggregator of these small resources but also find a fair remuneration according to their participation in the management of the local grid. The methodology could be explored by two approaches depending on time horizon: planning or operation. In the present paper, the two will be compared showing the viability of the path selected by the authors for the real-time approach - assign a remuneration group to a consumer considering the actual participation and the rules provided by a classification method.pt_PT
dc.description.sponsorshipThe present work was done and funded in the scope of the following projects: MAS-Socety Project, CEECIND/02887/2017, SFRH/BD/144200/2019, and UID/EEA/00760/2019 funded by FEDER Funds through COMPETE program and by National Funds through FCT.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/ISAP48318.2019.9065969pt_PT
dc.identifier.isbn978-1-7281-3192-4
dc.identifier.urihttp://hdl.handle.net/10400.22/18481
dc.language.isoengpt_PT
dc.publisherIEEEpt_PT
dc.relationEffective DR gathering and deployment for intensive renewable integration using aggregation and machine learning
dc.relationResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9065969pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/pt_PT
dc.subjectAggregationpt_PT
dc.subjectBusiness Modelpt_PT
dc.subjectClassificationpt_PT
dc.subjectDecision Treespt_PT
dc.subjectDemand Responsept_PT
dc.titleReal-Time Approach for Demand Response Tariffs Definition Using Decision Treespt_PT
dc.typeconference object
dspace.entity.typePublication
oaire.awardTitleEffective DR gathering and deployment for intensive renewable integration using aggregation and machine learning
oaire.awardTitleResearch Group on Intelligent Engineering and Computing for Advanced Innovation and Development
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F144200%2F2019/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FEEA%2F00760%2F2019/PT
oaire.citation.conferencePlaceNew Delhi, Indiapt_PT
oaire.citation.endPage6pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.title2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameSilva
person.familyNameFaria
person.familyNameVale
person.givenNameCátia
person.givenNamePedro
person.givenNameZita
person.identifier632184
person.identifier.ciencia-id5318-DCFD-218D
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8306-4568
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typeconferenceObjectpt_PT
relation.isAuthorOfPublication5eebf2bb-32f6-4593-a536-6db611d531e8
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery5eebf2bb-32f6-4593-a536-6db611d531e8
relation.isProjectOfPublication251e8359-504b-430d-b43d-84097b01ccfe
relation.isProjectOfPublication9b771c00-8c2c-4226-b06d-e33ef11f0d32
relation.isProjectOfPublication.latestForDiscovery9b771c00-8c2c-4226-b06d-e33ef11f0d32

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
COM_GECAD_ISAP_2019.pdf
Size:
366.54 KB
Format:
Adobe Portable Document Format