| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 6.58 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
Num contexto de disrupção da mobilidade, devido ao crescimento acelerado de novas tecnologias e às políticas de sustentabilidade, surge uma nova classe de veículos que, dependendo do tipo e da sua função, exigem novas tecnologias adequadas ao seu objetivo. As plataformas modulares autónomas elétricas surgiram, neste cenário, para reduzir o tempo de colocação de veículos elétricos no mercado, a complexidade da oferta e o custo total de produção do veículo. De forma a facilitar e adaptar manobrabilidade dos veículos aos futuros desafios da mobilidade, esta dissertação propõe a criação de um módulo facilmente adaptável a uma plataforma modular, já existente, que possibilite ao veículo os movimentos 360° e 90°. A dificuldade do desenvolvimento deste projeto, passa por encontrar um mecanismo para o sistema de direção que cumpra todos os requisitos cinemáticos, sem comprometer os restantes sistemas de controlo e estabilidade do movimento. Assim, após a definição de parâmetros de tração e de suspensão, são realizados, com recurso ao software SolidWorks®, testes a possíveis soluções encontradas. Por fim, é concebida a estrutura responsável pela união de todos os componentes envolvidos, e destes com a plataforma modular já existente. A geometria dos componentes é validada por um dimensionamento à fadiga, pelo Método de Elementos Finitos. A solução apresentada utiliza motores nas rodas, um sistema de suspensão do tipo Double Wishbone e um controlo de direção resultante da combinação de um conjunto de tirantes acionados por atuadores lineares regidos por um sistema by-wire. Desta forma, é possível um controlo independente de cada roda, de forma a cumprir todos os requisitos propostos.
In a context of disruption of mobility, due to the accelerated growth of new technologies and sustainability policies, a new class of vehicles emerges that depending on the type and their function, require new technologies appropriate to their goal. The autonomous electrical modular platforms emerged, in this scenario, to reduce the time of placing electric vehicles on the market, the complexity of supply and the total cost of production of the vehicle. To facilitate and adapt vehicle manoeuvrability to future mobility challenges, this dissertation proposes the creation of an easily adaptable module to an existing modular platform that allows the vehicle to move 360° and 90°. The difficulty of developing this project is to find a mechanism for the steering system that meets all cinematic requirements, without compromising the other systems of control and stability of movement. Thus, after the definition of traction and suspension parameters, tests are performed using SolidWorks® software, using possible solutions found. Finally, the structure responsible for the union of all the components involved was conceived, and these with the existing modular platform. The geometry of the components is validated by a fatigue dimensioning by the Finite Element Method. The presented solution uses wheel motors, a Double Wishbone suspension system and steering control resulting from the combination of a set of rods driven by linear actuators governed by a by-wire system. In this way, independent control of each wheel is possible to meet all proposed requirements.
In a context of disruption of mobility, due to the accelerated growth of new technologies and sustainability policies, a new class of vehicles emerges that depending on the type and their function, require new technologies appropriate to their goal. The autonomous electrical modular platforms emerged, in this scenario, to reduce the time of placing electric vehicles on the market, the complexity of supply and the total cost of production of the vehicle. To facilitate and adapt vehicle manoeuvrability to future mobility challenges, this dissertation proposes the creation of an easily adaptable module to an existing modular platform that allows the vehicle to move 360° and 90°. The difficulty of developing this project is to find a mechanism for the steering system that meets all cinematic requirements, without compromising the other systems of control and stability of movement. Thus, after the definition of traction and suspension parameters, tests are performed using SolidWorks® software, using possible solutions found. Finally, the structure responsible for the union of all the components involved was conceived, and these with the existing modular platform. The geometry of the components is validated by a fatigue dimensioning by the Finite Element Method. The presented solution uses wheel motors, a Double Wishbone suspension system and steering control resulting from the combination of a set of rods driven by linear actuators governed by a by-wire system. In this way, independent control of each wheel is possible to meet all proposed requirements.
Description
Keywords
Veículos Autónomos Mobilidade Plataforma Modular Elétrica Sistema de Suspensão Sistema de direção Autonomous vehicles Mobility Modular Electric Platform Suspension system Steering system
