Repository logo
 
Publication

Six thinking hats: A novel metalearner for intelligent decision support in electricity markets

dc.contributor.authorPinto, Tiago
dc.contributor.authorBarreto, João
dc.contributor.authorPraça, Isabel
dc.contributor.authorSousa, Tiago M.
dc.contributor.authorVale, Zita
dc.contributor.authorSolteiro Pires, E.J.
dc.date.accessioned2016-01-07T15:45:58Z
dc.date.available2016-01-07T15:45:58Z
dc.date.issued2015-11
dc.description.abstractThe energy sector has suffered a significant restructuring that has increased the complexity in electricity market players' interactions. The complexity that these changes brought requires the creation of decision support tools to facilitate the study and understanding of these markets. The Multiagent Simulator of Competitive Electricity Markets (MASCEM) arose in this context, providing a simulation framework for deregulated electricity markets. The Adaptive Learning strategic Bidding System (ALBidS) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM, ALBidS considers several different strategic methodologies based on highly distinct approaches. Six Thinking Hats (STH) is a powerful technique used to look at decisions from different perspectives, forcing the thinker to move outside its usual way of thinking. This paper aims to complement the ALBidS strategies by combining them and taking advantage of their different perspectives through the use of the STH group decision technique. The combination of ALBidS' strategies is performed through the application of a genetic algorithm, resulting in an evolutionary learning approach.pt_PT
dc.identifier.doi10.1016/j.dss.2015.07.011pt_PT
dc.identifier.issn0167-9236
dc.identifier.urihttp://hdl.handle.net/10400.22/7321
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relation.ispartofseriesDecision Support Systems;Vol. 79
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0167923615001438pt_PT
dc.subjectArtificial intelligencept_PT
dc.subjectDecision support systempt_PT
dc.subjectElectricity marketpt_PT
dc.subjectGenetic algorithmpt_PT
dc.subjectMultiagent simulationpt_PT
dc.subjectMachine learningpt_PT
dc.titleSix thinking hats: A novel metalearner for intelligent decision support in electricity marketspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage11pt_PT
oaire.citation.startPage1pt_PT
oaire.citation.titleDecision Support Systemspt_PT
oaire.citation.volume79pt_PT
person.familyNamePinto
person.familyNamePraça
person.familyNameVale
person.givenNameTiago
person.givenNameIsabel
person.givenNameZita
person.identifierR-000-T7J
person.identifier299522
person.identifier632184
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-idC710-4218-1BFF
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-2519-9859
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridK-8430-2014
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id22734900800
person.identifier.scopus-author-id7004115775
rcaap.rightsclosedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationee4ecacd-c6c6-41e8-bca1-21a60ff05f50
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscoveryff1df02d-0c0f-4db1-bf7d-78863a99420b

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ART1_TiagoPinto_2015_GECAD.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: