Repository logo
 
Publication

Modified Particle Swarm Optimization Applied to Integrated Demand Response and DG Resources Scheduling

dc.contributor.authorFaria, Pedro
dc.contributor.authorSoares, João
dc.contributor.authorVale, Zita
dc.contributor.authorMorais, Hugo
dc.contributor.authorSousa, Tiago
dc.date.accessioned2014-12-09T16:06:49Z
dc.date.available2014-12-09T16:06:49Z
dc.date.issued2013-03
dc.description.abstractThe elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.por
dc.identifier.doi10.1109/TSG.2012.2235866
dc.identifier.issn1949-3053
dc.identifier.urihttp://hdl.handle.net/10400.22/5251
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherIEEEpor
dc.relation.ispartofseriesIEEE Transactions on Smart Grid;Vol. 4, Issue 1
dc.relation.publisherversionhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6409484&queryText%3DModified+Particle+Swarm+Optimization+Applied+to+Integrated+Demand+Response+and+DG+Resources+Schedulingpor
dc.subjectEnergy resourcespor
dc.subjectGeneratorspor
dc.subjectLoad managementpor
dc.subjectOptimizationpor
dc.subjectParticle swarm optimizationpor
dc.subjectPower generationpor
dc.subjectReactive powerpor
dc.titleModified Particle Swarm Optimization Applied to Integrated Demand Response and DG Resources Schedulingpor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage616por
oaire.citation.startPage606por
oaire.citation.titleIEEE Transactions on Smart Gridpor
oaire.citation.volume4por
person.familyNameFaria
person.familyNameSoares
person.familyNameVale
person.familyNameMorais
person.givenNamePedro
person.givenNameJoão
person.givenNameZita
person.givenNameHugo
person.identifier1043580
person.identifier632184
person.identifier80878
person.identifier.ciencia-idB212-2309-F9C3
person.identifier.ciencia-id1612-8EA8-D0E8
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.ciencia-id2010-D878-271B
person.identifier.orcid0000-0002-5982-8342
person.identifier.orcid0000-0002-4172-4502
person.identifier.orcid0000-0002-4560-9544
person.identifier.orcid0000-0001-5906-4744
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35436109600
person.identifier.scopus-author-id7004115775
person.identifier.scopus-author-id21834170800
rcaap.rightsclosedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6
relation.isAuthorOfPublication9ece308b-6d79-4cec-af91-f2278dcc47eb
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublicationb159f8c9-5ee1-444e-b890-81242ee0738e
relation.isAuthorOfPublication.latestForDiscovery35e6a4ab-f644-4bc5-b6fc-9fd89c23d6c6

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_Vale_2014_IEEE_GECAD.pdf
Size:
1.63 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: