Repository logo
 
Publication

Consumer Flexibility Aggregation Using Partition Function Games With Non-Transferable Utility

dc.contributor.authorPinto, Tiago
dc.contributor.authorWooldridge, Michael
dc.contributor.authorVale, Zita
dc.date.accessioned2021-09-17T11:12:30Z
dc.date.available2021-09-17T11:12:30Z
dc.date.issued2021-03
dc.description.abstractThis paper explores the aggregation of electricity consumers flexibility. A novel coalitional game theory model for partition function games with non-transferable utility is proposed. This model is used to formalize a game in which electricity consumers find coalitions among themselves in order to trade their consumption flexibility in the electricity market. Utility functions are defined to enable measuring the players preferences. Two case studies are presented, including a simple illustrative case, which assesses and explains the model in detail; and a large-scale scenario based on real data, comprising more than 20,000 consumers. Results show that the proposed model is able to reach solutions that are more suitable for the consumers when compared to the solutions achieved by traditional aggregation techniques in power and energy systems, such as clustering-based methodologies. The solutions found by the proposed model consider the perspectives from all players involved in the game and thus are able to reflect the rational behaviour of the involved players, rather than imposing an aggregation solution that is only beneficial from the perspective of the aggregator.pt_PT
dc.description.sponsorshipThis work was supported in part by the European Union's Horizon 2020 research and innovation programme through project DOMINOES under Grant 771066, in part by the FEDER Funds through COMPETE program, and in part by the National Funds through FCT under Project CEECIND/01811/2017 and Project UID/EEA/00760/2019.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1109/ACCESS.2021.3069416pt_PT
dc.identifier.urihttp://hdl.handle.net/10400.22/18405
dc.language.isoengpt_PT
dc.publisherIEEEpt_PT
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9388689pt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectCoalitional game theorypt_PT
dc.subjectConsumer flexibilitypt_PT
dc.subjectLarge-scale applicationpt_PT
dc.subjectPartition function gamespt_PT
dc.subjectNon-transferable utilitypt_PT
dc.titleConsumer Flexibility Aggregation Using Partition Function Games With Non-Transferable Utilitypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/154850/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/CEEC IND 2017/4291/PT
oaire.citation.endPage51535pt_PT
oaire.citation.startPage51519pt_PT
oaire.citation.titleIEEE Accesspt_PT
oaire.citation.volume9pt_PT
oaire.fundingStream6817 - DCRRNI ID
oaire.fundingStreamCEEC IND 2017
person.familyNamePinto
person.familyNameVale
person.givenNameTiago
person.givenNameZita
person.identifierR-000-T7J
person.identifier632184
person.identifier.ciencia-id2414-9B03-C4BB
person.identifier.ciencia-id721B-B0EB-7141
person.identifier.orcid0000-0001-8248-080X
person.identifier.orcid0000-0002-4560-9544
person.identifier.ridT-2245-2018
person.identifier.ridA-5824-2012
person.identifier.scopus-author-id35219107600
person.identifier.scopus-author-id7004115775
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isAuthorOfPublicationff1df02d-0c0f-4db1-bf7d-78863a99420b
relation.isAuthorOfPublication.latestForDiscovery8d58ddc0-1023-47c0-a005-129d412ce98d
relation.isProjectOfPublication83787606-7ad3-4b55-8e3d-b2b2d1577390
relation.isProjectOfPublication9375f9c7-67c9-41bf-9916-7238351f1a56
relation.isProjectOfPublication.latestForDiscovery83787606-7ad3-4b55-8e3d-b2b2d1577390

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ART_GECAD_Pinto_2021.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format